1
|
Schacksen PS, Macêdo WV, Rellegadla S, Vergeynst L, Nielsen JL. Dynamics of nitrogen-transforming microbial populations in wastewater treatment during recirculation of hydrothermal liquefaction process-water. WATER RESEARCH 2025; 276:123254. [PMID: 39954461 DOI: 10.1016/j.watres.2025.123254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
The global reliance on non-renewable fossil fuels highlights the urgent need for sustainable alternative energy sources. Hydrothermal liquefaction (HTL) offers a promising solution by converting biomass, such as sewage sludge, into biocrude oil. However, the integration of excess HTL-process water (HTL-PW), a by-product of this process, into conventional wastewater treatment requires careful evaluation. This study investigates the effects of recirculating HTL-PW in sequencing batch reactors (SBRs) using synthetic wastewater. Two SBRs were operated in parallel: one fed 0.15 % (v/v) HTL-PW and the other with only synthetic feed. The reactor receiving HTL-PW demonstrated superior stability, effective nitrification, and consistent denitrification with no adverse effects on nitrogen species turnover. A comprehensive approach combining 16S rRNA gene amplicon sequencing for relative abundance and metagenomic analysis, for enhanced resolution of nitrogen-transforming populations, revealed the genetic repertoire and potential of 58±4 % and 65±4 % of the genus-level annotations from the HTL-PW and control reactors, respectively. The HTL-PW-fed reactor maintained robust performance, with microbial community analysis revealing a strong association between nitrogen transformations and specific microbial taxa, thereby explaining the observed reactor stability and efficiency in nitrogen conversion. These findings demonstrate the feasibility of integrating HTL-PW into wastewater treatment systems, showing that recirculating HTL-PW at the tested concentrations does not adversely affect nitrogen transformations, supports stable nitrification and denitrification, ensures complete ammonium utilisation, and promotes diverse and dynamic microbial communities similar to those in full-scale wastewater treatment plants.
Collapse
Affiliation(s)
- Patrick Skov Schacksen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg East 9220, Denmark
| | - Williane Vieira Macêdo
- Department of Biological and Chemical Engineering, Aarhus University Centre for Water Technology (WATEC), Aarhus University, Universitetsbyen 36, Aarhus C 8000, Denmark
| | - Sandeep Rellegadla
- Department of Biological and Chemical Engineering, Aarhus University Centre for Water Technology (WATEC), Aarhus University, Universitetsbyen 36, Aarhus C 8000, Denmark
| | - Leendert Vergeynst
- Department of Biological and Chemical Engineering, Aarhus University Centre for Water Technology (WATEC), Aarhus University, Universitetsbyen 36, Aarhus C 8000, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg East 9220, Denmark.
| |
Collapse
|
2
|
Modzelewska A, Jackowski M, Boutikos P, Lech M, Grabowski M, Krochmalny K, Martínez MG, Aragón-Briceño C, Arora A, Luo H, Fiori L, Xiong Q, Arshad MY, Trusek A, Pawlak-Kruczek H, Niedzwiecki L. Sustainable production of biohydrogen: Feedstock, pretreatment methods, production processes, and environmental impact. FUEL PROCESSING TECHNOLOGY 2024; 266:108158. [DOI: 10.1016/j.fuproc.2024.108158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Suárez E, Tobajas M, Mohedano AF, de la Rubia MA. Biowaste management by hydrothermal carbonization and anaerobic co-digestion: Synergistic effects and comparative metagenomic analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 180:1-8. [PMID: 38493518 DOI: 10.1016/j.wasman.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/04/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
The feasibility of anaerobic co-digestion in semicontinuous mode of two major urban biowaste, food waste (FW) and garden and park waste (GPW) (75 % FW and 25 % GPW) as well as the co-digestion of FW with the process water originated from the hydrothermal carbonization of GPW (95 % FW and 5 % process water), both on a COD basis, has been assessed. The effect of varying organic loading rate (OLR) from 1.5 to 3.5 g COD/L·d on methane yield, gross energy recovery, and microbiome population was evaluated. For comparison, anaerobic digestion of FW was also conducted to determine the best strategy for sustainable biowaste management. This study showed an optimal OLR of 2.5 g COD/L·d. Acetic and propionic acid content increased as OLR raised for each condition studied, while methane yield decreased at the highest OLR tested indicating overloading of the system. The anaerobic co-digestion of FW and process water showed a 10 % increase on methane production compared to anaerobic digestion of FW (324 vs. 294 mL CH4 STP/L·d). Moreover, it enhances the process due to a greater abundance and diversity of hydrolytic and acidogenic bacteria belonging to Bacterioidota, Firmicutes, and Chloroflexi phyla, as well as promotes the hydrogenotrophic pathway under higher propionic concentrations which is not usually favoured for methane production. The integration of hydrothermal carbonization of GPW with the anaerobic co-digestion of 95 % FW and 5 % of process water results in the highest potential energy recovery and could be a good strategy for sustainable management of urban biowaste.
Collapse
Affiliation(s)
- E Suárez
- Chemical Engineering Department, Universidad Autonoma de Madrid, 28049 Madrid, Spain.
| | - M Tobajas
- Chemical Engineering Department, Universidad Autonoma de Madrid, 28049 Madrid, Spain.
| | - A F Mohedano
- Chemical Engineering Department, Universidad Autonoma de Madrid, 28049 Madrid, Spain.
| | - M A de la Rubia
- Chemical Engineering Department, Universidad Autonoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
4
|
Picone A, Volpe M, Codignole Lùz F, Malik W, Volpe R, Messineo A. Co-hydrothermal carbonization with process water recirculation as a valuable strategy to enhance hydrochar recovery with high energy efficiency. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:101-109. [PMID: 38194795 DOI: 10.1016/j.wasman.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/28/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
This study aims at valorizing the residual aqueous phase from hydrothermal carbonization (HTC) of Sicilian agro-wastes in order to enhance the hydrochar recovery, positively affecting the process energy balance. Process waters (PW) obtained from HTC and co-HTC using orange peel waste and fennel plant residues were used as recycled solvent in experiments carried out at the temperatures of 180 and 230 °C. The results showed that an additional hydrochar formation was promoted during recirculation of solvent, leading to average increments of solid mass yield of 10.5 wt% for tests conducted at 180 °C and 3.9 wt% for 230 °C. After five consecutive recirculation phases in co-HTC runs, the hydrochar yield increased up to 18.2 wt%. The low H/C and O/C atomic ratios values, found after recirculation, indicate that organic acids, accumulated in the PW, may catalyze the process and promote the biomass deoxygenation by boosting dehydration and decarboxylation. The recovered PWs from conversion steps with deionized water were also carbonized in absence of the solid feedstock in order to quantify their contribution in hydrochar formation during recirculation and thus the synergistic interactions. After recirculation, energy recovery averagely augmented by more than threefold, showing that the proposed strategy could significantly improve the sustainability of HTC.
Collapse
Affiliation(s)
- Antonio Picone
- Facoltà di Ingegneria e Architettura, Università degli Studi di Enna "Kore", Cittadella Universitaria, 94100, Enna, Italy
| | - Maurizio Volpe
- Facoltà di Ingegneria e Architettura, Università degli Studi di Enna "Kore", Cittadella Universitaria, 94100, Enna, Italy
| | - Fabio Codignole Lùz
- Facoltà di Ingegneria e Architettura, Università degli Studi di Enna "Kore", Cittadella Universitaria, 94100, Enna, Italy
| | - Waqas Malik
- School of Engineering and Material Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Roberto Volpe
- School of Engineering and Material Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Antonio Messineo
- Facoltà di Ingegneria e Architettura, Università degli Studi di Enna "Kore", Cittadella Universitaria, 94100, Enna, Italy.
| |
Collapse
|
5
|
Rathika K, Kumar S, Yadav BR. Enhanced energy and nutrient recovery via hydrothermal carbonisation of sewage sludge: Effect of process parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167828. [PMID: 37839482 DOI: 10.1016/j.scitotenv.2023.167828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Integration of waste management with energy and resource recovery is being widely explored to achieve sustainability. To achieve this, sewage sludge was treated with hydrothermal carbonisation (HTC) at temperatures ranging from 180 °C-260 °C with an increment of 20 °C for three different duration of 1 h, 3 h, and 5 h. The energy and resource recovery potential of the HTC treatment was evaluated through of hydrochar (HC) and process water (PW) properties. Dehydration and decarboxylation reactions resulted in reduced H/C and O/C atomic ratios of 1.35 and 0.45 respectively in HC-260-3, exhibiting peat-like propertied. The calorific value of HC-260-5 was enhanced to 5.9 MJ/kg (increase of 25.8 %) due to the combined effect of H/C and O/C atomic ratios, increased volatile organics and fixed carbon. A maximum energy recovery efficiency of 82.44 % was realised at 240 °C for 3 h rendering it the optimal process condition to ensure energy enrichment. Thermogravimetric analysis (TGA) of HC samples indicated an enhanced combustion behaviour with an increased HTC severity. The elevated levels of volatile fatty acids (VFAs) in PW (maximum 2296 mg/L) made it viable for energy recovery in anaerobic digestion units. Additionally, the PW contains significant concentrations of N and P (2091.68 mg/L and 40.51 mg/L, respectively), indicating enhanced resource/nutrient recovery potential.
Collapse
Affiliation(s)
- K Rathika
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bholu Ram Yadav
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Ranjbar S, Malcata FX. Hydrothermal Liquefaction: How the Holistic Approach by Nature Will Help Solve the Environmental Conundrum. Molecules 2023; 28:8127. [PMID: 38138616 PMCID: PMC10745749 DOI: 10.3390/molecules28248127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Hydrothermal liquefaction (HTL) represents a beacon of scientific innovation, which unlocks nature's alchemical wonders while reshaping the waste-to-energy platform. This transformative technology offers sustainable solutions for converting a variety of waste materials to valuable energy products and chemicals-thus addressing environmental concerns, inefficiencies, and high costs associated with conventional waste-management practices. By operating under high temperature and pressure conditions, HTL efficiently reduces waste volume, mitigates harmful pollutant release, and extracts valuable energy from organic waste materials. This comprehensive review delves into the intricacies of the HTL process and explores its applications. Key process parameters, diverse feedstocks, various reactor designs, and recent advancements in HTL technology are thoroughly discussed. Diverse applications of HTL products are examined, and their economic viability toward integration in the market is assessed. Knowledge gaps and opportunities for further exploration are accordingly identified, with a focus on optimizing and scaling up the HTL process for commercial applications. In conclusion, HTL holds great promise as a sustainable technology for waste management, chemical synthesis, and energy production, thus making a significant contribution to a more sustainable future. Its potential to foster a circular economy and its versatility in producing valuable products underscore its transformative role in shaping a more sustainable world.
Collapse
Affiliation(s)
- Saeed Ranjbar
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associated Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Francisco Xavier Malcata
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associated Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
7
|
Madusari S, Jamari SS, Nordin NIAA, Bindar Y, Prakoso T, Restiawaty E, Steven S. Hybrid Hydrothermal Carbonization and Ultrasound Technology on Oil Palm Biomass for Hydrochar Production. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sylvia Madusari
- University Malaysia Pahang Faculty of Chemical and Process Engineering Technology Lebuh Persiaran Tun Khalil Yaakob 26300 Pekan Malaysia
- Politeknik Kelapa Sawit Citra Widya Edukasi Production Technology of Plantation Crop Program Jl. Gapura No. 8 17520 Bekasi Indonesia
| | - Saidatul Shima Jamari
- University Malaysia Pahang Faculty of Chemical and Process Engineering Technology Lebuh Persiaran Tun Khalil Yaakob 26300 Pekan Malaysia
| | - Noor Ida Amalina Ahamad Nordin
- University Malaysia Pahang Faculty of Chemical and Process Engineering Technology Lebuh Persiaran Tun Khalil Yaakob 26300 Pekan Malaysia
| | - Yazid Bindar
- Institut Teknologi Bandung Department of Chemical Engineering Jl. Ganesha No. 10 40132 Bandung Indonesia
- Institut Teknologi Bandung Department of Bioenergy and Chemurgy Engineering Kampus Jatinangor 45363 Sumedang West Java Indonesia
| | - Tirto Prakoso
- Institut Teknologi Bandung Department of Chemical Engineering Jl. Ganesha No. 10 40132 Bandung Indonesia
- Institut Teknologi Bandung Department of Bioenergy and Chemurgy Engineering Kampus Jatinangor 45363 Sumedang West Java Indonesia
| | - Elvi Restiawaty
- Institut Teknologi Bandung Department of Chemical Engineering Jl. Ganesha No. 10 40132 Bandung Indonesia
- Institut Teknologi Bandung Department of Bioenergy and Chemurgy Engineering Kampus Jatinangor 45363 Sumedang West Java Indonesia
| | - Soen Steven
- Institut Teknologi Bandung Department of Chemical Engineering Jl. Ganesha No. 10 40132 Bandung Indonesia
| |
Collapse
|
8
|
Son Le H, Chen WH, Forruque Ahmed S, Said Z, Rafa N, Tuan Le A, Ağbulut Ü, Veza I, Phuong Nguyen X, Quang Duong X, Huang Z, Hoang AT. Hydrothermal carbonization of food waste as sustainable energy conversion path. BIORESOURCE TECHNOLOGY 2022; 363:127958. [PMID: 36113822 DOI: 10.1016/j.biortech.2022.127958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Every day, a large amount of food waste (FW) is released into the environment, causing financial loss and unpredictable consequences in the world, highlighting the urgency of finding a suitable approach to treating FW. As moisture content makes up 75% of the FW, hydrothermal carbonization (HTC) is a beneficial process for the treatment of FW since it does not require extensive drying. Moreover, the process is considered favorable for carbon sequestration to mitigate climate change in comparison with other processes because the majority of the carbon in FW is integrated into hydrochar. In this work, the reaction mechanism and factors affecting the HTC of FW are scrutinized. Moreover, the physicochemical properties of products after the HTC of FW are critically presented. In general, HTC of FW is considered a promising approach aiming to attain simultaneously-two core benefits on economy and energy in the sustainable development strategy.
Collapse
Affiliation(s)
- Huu Son Le
- Faculty of Automotive Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Zafar Said
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah P. O. Box 27272, United Arab Emirates; U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Nazifa Rafa
- Department of Land Economy, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, UK
| | - Anh Tuan Le
- School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Ümit Ağbulut
- Department of Mechanical Engineering, Faculty of Engineering, Düzce University, 81620, Düzce, Türkiye
| | - Ibham Veza
- Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh city, Vietnam
| | - Xuan Quang Duong
- School of Mechanical Engineering, Vietnam Maritime University, Haiphong, Vietnam
| | - Zuohua Huang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh city, Vietnam.
| |
Collapse
|
9
|
Scrinzi D, Ferrentino R, Baù E, Fiori L, Andreottola G. Sewage Sludge Management at District Level: Reduction and Nutrients Recovery via Hydrothermal Carbonization. WASTE AND BIOMASS VALORIZATION 2022; 14:1-13. [PMID: 36212777 PMCID: PMC9532233 DOI: 10.1007/s12649-022-01943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
In this study, two scenarios of a municipal wastewater treatment plant (WWTP) are presented, which include the integration of the hydrothermal carbonization (HTC) process into the sludge line as a post-treatment of the anaerobic digestion (AD) process. The objective of the simulation is to investigate the performances of AD + HTC treatment to reduce sludge production and improve nutrient and energy recovery. For this purpose, the scheme of an under-construction WWTP was considered, named Trento 3 (Trento, Italy) and with a treatment capacity of 300,000 PE. In the first scenario, the HTC process was fed with thickened sludge from the Trento 3 WWTP, while in the second scenario, dewatered sludge from other local WWTPs was also used as feedstock for the HTC process. Both scenarios allowed to obtain a considerable sludge reduction ranging from 70 to 75% with a notably increase in the biogas production up to 47%, due to the recycling of HTC liquor (HTCL) to the anaerobic digester. Considering nutrients recovery, all the phosphorus and nitrogen present in the HTCL could be used for struvite precipitation with an average yearly gain of 1 million euros. Moreover, the introduction of HTC in the Trento 3 WWTP could allow a reduction in the sludge management costs of up to 2 M€/year. Graphical Abstract
Collapse
Affiliation(s)
- D. Scrinzi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| | - R. Ferrentino
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| | - E. Baù
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| | - L. Fiori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| | - G. Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| |
Collapse
|
10
|
Effects of Bioliquid Recirculation on Hydrothermal Carbonization of Lignocellulosic Biomass. ENERGIES 2022. [DOI: 10.3390/en15134903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The characteristics of bioliquid produced through the hydrothermal carbonization (HTC) of wood wastes and the effects of recirculation on hydrochar production were analyzed. The organic acids and total organic carbon of bioliquid increased with progressive recirculation, whereas intermediate byproducts decreased. Hydrochar production by bioliquid recirculation increased mass yield, carbon content, caloric value, and energy yield of the former, while improving its quality as a solid refuse fuel. We concluded that bioliquid recirculation promoted HTC, as demonstrated by Fourier-transform infrared spectroscopy. Furthermore, contrary to predictions, a relatively constant quantity of bioliquid was generated in each step, indicating that its continuous reuse is feasible. Therefore, bioliquid recirculation can improve hydrochar production while simultaneously mitigating the environmental impact of wastewater generation. This method should be considered an important strategy toward the implementation of carbon-neutrality goals.
Collapse
|
11
|
Use of Hydrothermal Carbonization and Cold Atmospheric Plasma for Surface Modification of Brewer’s Spent Grain and Activated Carbon. ENERGIES 2022. [DOI: 10.3390/en15124396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This paper presents results that show the effect of hydrothermal carbonization and subsequent cold plasma jet treatment with helium and argon on the structure and sorption properties of a material—spent brewery grain. Treatment of activated carbon, with a cold atmospheric plasma jet, was used comparatively. The effect of activation on the pore structure of the materials was carried out by the volumetric method at low pressure (N2, 77 K). The specific surface area as well as the total pore volume, average pore size, and pore size distribution were determined using different theoretical models. A high improvement in the sorption capacity parameter was obtained for hydrochars after cold atmospheric plasma jet treatment with an increase of 7.5 times (using He) and 11.6 times (using Ar) compared with hydrochars before cold atmospheric plasma jet treatment. The increase in specific surface area was five-fold (He) and fifteen-fold (Ar). For activated carbon, such a large change was not obtained after plasma activation. Regardless of the gas used, the increase in structural parameter values was 1.1–1.3.
Collapse
|
12
|
Ipiales RP, Mohedano AF, Diaz E, de la Rubia MA. Energy recovery from garden and park waste by hydrothermal carbonisation and anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 140:100-109. [PMID: 35078074 DOI: 10.1016/j.wasman.2022.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Hydrothermal carbonisation (HTC) can transform wet lignocellulosic biomass, which is not considered an effective biofuel for energy production at the industrial level, into a carbonaceous product called hydrochar (HC) that is suitable for combustion and a process water (PW). PW is an interesting by-product that can be valorised for biogas production via anaerobic digestion (AD). This study presents a new approach for the valorisation of garden and park wastes (GPW) by integrating HTC to generate HC for energy production, while PW is subjected to AD for biogas production. The hydrothermal treatment was performed at 180, 210, and 230 °C, yielding HC with improved physicochemical properties, such as an elevated higher heating value (21-25 MJ kg-1); low ash (<5 wt.%), nitrogen (1.3 wt.%), and sulphur (0.2 wt.%) contents; better fuel ratio (0.4-0.6); and a broad comprehensive combustibility index (8.0×10-7 to 9.6×10-7 min-2 °C-3). AD of the generated PW was conducted under mesophilic conditions (35 °C), resulting in a methane production in the range of 253-326 mL g-1 CODadded and COD removal of up to 65%. The combination of HTC and AD allowed the recovery of 91% and 94% of the energy content feedstock, as calculated from the combustion of HC and methane, respectively.
Collapse
Affiliation(s)
- R P Ipiales
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Arquimea-Agrotech, 28400 Collado Villalba, Madrid, Spain
| | - A F Mohedano
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - E Diaz
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - M A de la Rubia
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
13
|
Sharma HB, Panigrahi S, Vanapalli KR, Cheela VRS, Venna S, Dubey B. Study on the process wastewater reuse and valorisation during hydrothermal co-carbonization of food and yard waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150748. [PMID: 34648829 DOI: 10.1016/j.scitotenv.2021.150748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The commercial success of hydrothermal carbonization (HTC) is contingent on seeking solutions for the downstream wastewater (process water) generated during the process which is still regarded largely as a nuisance. In the present study, the reusability and valorization strategy of process wastewater generated during co-HTC of organic fraction of municipal solid waste (food and yard waste) at 220 °C for 1 h was established. The process wastewater was anaerobically digested in the first part to determine its methane-generating capacity; and in the second part, it was recirculated up to five times to understand the evolution of physicochemical and fuel characteristics of hydrochar. The process water was characterized by the presence of high total organic carbon (up to 40 g/L) and chemical oxygen demand (up to 96 g/L). The decreasing trend of heavy metals with increasing recirculation suggested possible adsorption/immobilization mechanism taking place to the hydrochar surface. The process water generated from co-HTC condition has anaerobic biodegradability of 72% while experimental and theoretical methane yield observed were 224 mL/g COD and 308 mL/g COD, respectively. The presence of high organic and ionic species in recirculated process water promoted the overall carbonization process which was evident from the increased energy yield (86 to 92%), carbon content (68 to 71%) and calorific value (20 to 27 MJ/kg). The recirculation also enhanced overall combustion characteristics of hydrochar as analyzed by thermogravimetric analysis. The recirculation strategy enhanced fuel properties of hydrochar while making sure upstream and downstream water related burden is reduced (as illustrated by life cycle analysis) to create a cleaner production system for renewable solid biofuels production.
Collapse
Affiliation(s)
- Hari Bhakta Sharma
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sagarika Panigrahi
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Kumar Raja Vanapalli
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - V R Sankar Cheela
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Saikrishna Venna
- Department of Civil Engineering, National Institute of Technology Warangal, Telangana 506004, India
| | - Brajesh Dubey
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| |
Collapse
|
14
|
Industrial-Scale Hydrothermal Carbonization of Agro-Industrial Digested Sludge: Filterability Enhancement and Phosphorus Recovery. SUSTAINABILITY 2021. [DOI: 10.3390/su13169343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrothermal carbonization (HTC) provides an attractive alternative method for the treatment of high-moisture waste and, in particular, digested sludge. HTC could reduce the costs and environmental risks associated with sludge handling and management. Although it is recognized that the dewaterability of hydrochars produced from digested sludge, even at mild temperatures (180–190 °C), is highly improved with respect to the starting material, the filterability of HTC slurries for the recovery of the solid material (hydrochar) still represents a challenge. This study presents the results of an investigation into the filterability of agro-industrial digested sludge HTC slurries produced by a C-700 CarboremTM HTC industrial-scale plant. The filterability of HTC slurries, produced at 190 °C for 1 h, with the use of acid solutions of hydrochloric acid, sulfuric acid or citric acids, was investigated by using a semi-industrial filter press. The use of sulfuric acid or citric acid solutions, in particular, significantly improved the filterability of HTC slurries, reducing the time of filtration and residual moisture content. The acid treatment also promoted the migration of heavy metals and phosphorus (P) in the HTC filtrate solution. This study demonstrates that P can be recovered via the precipitation of struvite in high yields, recovering up to 85 wt% by mass of its initial P content.
Collapse
|
15
|
Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance. ENERGIES 2021. [DOI: 10.3390/en14164752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New regulations aimed at curbing the problem of eutrophication introduce limitations for traditional ways to use the by-product of anaerobic digestion—the digestate. Hydrothermal carbonisation (HTC) can be a viable way to valorise the digestate in an energy-efficient manner and at the same time maximise the synergy in terms of recovery of water, nutrients, followed by more efficient use of the remaining carbon. Additionally, hydrothermal treatment is a feasible way to recirculate recalcitrant process residues. Recirculation to anaerobic digestion enables recovery of a significant part of chemical energy lost in HTC by organics dissolved in the liquid effluent. Recirculating back to the HTC process can enhance nutrient recovery by making process water more acidic. However, such an effect of synergy can be exploited to its full extent only when viable separation techniques are applied to separate organic by-products of HTC and water. The results presented in this study show that using cascade membrane systems (microfiltration (MF) → ultrafiltration (UF) → nanofiltration (NF)), using polymeric membranes, can facilitate such separation. The best results were obtained by conducting sequential treatment of the liquid by-product of HTC in the following membrane sequence: MF 0.2 µm → UF PES 10 → NF NPO30P, which allowed reaching COD removal efficiency of almost 60%.
Collapse
|