1
|
A Method for the Evaluation of Power-Generating Sets Based on the Assessment of Power Quality Parameters. ENERGIES 2022. [DOI: 10.3390/en15145305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This article presents a new method for the classification of machine failures using an example of selected generating sets. Measurements and an analysis of the electrical parameters, such as the phase-to-phase voltages at the terminals of a synchronous generator, armature current, and voltage and excitation current of a synchronous generator, are the basis for determining the failure symptoms. The existing energy quality coefficients are adopted as symptoms for the assessment of failures in the monitored generating set. We assume in this method that the description of the input–output relationship is in the form of a black box and use the binary diagnostics matrix (BDM) to investigate the failure–symptom relationships between the inputs (intentional failures) and outputs (failures symptoms = fault-sensitive power quality (PQ) coefficients). The method presented in this article enables the detection and classification of both electrical damage in a synchronous generator and mechanical damage in a diesel engine. It is anticipated that further work and development of the method will focus on the implementation of the algorithm in the form of software into a miniature IoT module for the automatic classification of failures.
Collapse
|
2
|
Application of Generator Capacity Design Technique Considering the Operational Characteristics of Container Ships. ELECTRONICS 2022. [DOI: 10.3390/electronics11111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The advantages of economies of scale in marine logistics and transportation can be obtained by building bigger ships. As ship sizes increase, so do their propulsion systems, requiring that stable and high-efficiency power must continuously be supplied. In general, ships’ operations require power lower than the installed generator capacity. However, when the generator is operated at a low load, its efficiency decreases. In this study, based on actual operation data, the load requirements for each operation mode were analyzed, and a diesel-generator-based power system was designed. We present a generator capacity optimization calculation method through generator capacity. The proposed strategy maximizes the space utilization and efficiency of the ship while minimizing the generator’s power consumption. The generator’s fuel consumption, operating time, and efficiency were compared and analyzed to verify the proposed strategy’s efficacy. In conclusion, the proposed strategy demonstrated the effect of reducing fuel consumption by 2.2%, increasing generator efficiency by 8.4%, and reducing costs by 5.14% compared to the existing onboard generator capacity for the same vessel.
Collapse
|