Yu X, Catanescu CO, Bird RE, Satagopan S, Baum ZJ, Lotti Diaz LM, Zhou QA. Trends in Research and Development for CO
2 Capture and Sequestration.
ACS OMEGA 2023;
8:11643-11664. [PMID:
37033841 PMCID:
PMC10077574 DOI:
10.1021/acsomega.2c05070]
[Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Technological and medical advances over the past few decades epitomize human capabilities. However, the increased life expectancies and concomitant land-use changes have significantly contributed to the release of ∼830 gigatons of CO2 into the atmosphere over the last three decades, an amount comparable to the prior two and a half centuries of CO2 emissions. The United Nations has adopted a pledge to achieve "net zero", i.e., yearly removing as much CO2 from the atmosphere as the amount emitted due to human activities, by the year 2050. Attaining this goal will require a concerted effort by scientists, policy makers, and industries all around the globe. The development of novel materials on industrial scales to selectively remove CO2 from mixtures of gases makes it possible to mitigate CO2 emissions using a multipronged approach. Broadly, the CO2 present in the atmosphere can be captured using materials and processes for biological, chemical, and geological technologies that can sequester CO2 while also reducing our dependence on fossil-fuel reserves. In this review, we used the curated literature available in the CAS Content Collection to present a systematic analysis of the various approaches taken by scientists and industrialists to restore carbon balance in the environment. Our analysis highlights the latest trends alongside the associated challenges.
Collapse