Cruz-Martínez H, García-Hilerio B, Montejo-Alvaro F, Gazga-Villalobos A, Rojas-Chávez H, Sánchez-Rodríguez EP. Density Functional Theory-Based Approaches to Improving Hydrogen Storage in Graphene-Based Materials.
Molecules 2024;
29:436. [PMID:
38257348 PMCID:
PMC10820618 DOI:
10.3390/molecules29020436]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Various technologies have been developed for the safe and efficient storage of hydrogen. Hydrogen storage in its solid form is an attractive option to overcome challenges such as storage and cost. Specifically, hydrogen storage in carbon-based structures is a good solution. To date, numerous theoretical studies have explored hydrogen storage in different carbon structures. Consequently, in this review, density functional theory (DFT) studies on hydrogen storage in graphene-based structures are examined in detail. Different modifications of graphene structures to improve their hydrogen storage properties are comprehensively reviewed. To date, various modified graphene structures, such as decorated graphene, doped graphene, graphene with vacancies, graphene with vacancies-doping, as well as decorated-doped graphene, have been explored to modify the reactivity of pristine graphene. Most of these modified graphene structures are good candidates for hydrogen storage. The DFT-based theoretical studies analyzed in this review should motivate experimental groups to experimentally validate the theoretical predictions as many modified graphene systems are shown to be good candidates for hydrogen storage.
Collapse