1
|
Tuli NT, Khatun S, Rashid AB. Unlocking the future of precision manufacturing: A comprehensive exploration of 3D printing with fiber-reinforced composites in aerospace, automotive, medical, and consumer industries. Heliyon 2024; 10:e27328. [PMID: 38495162 PMCID: PMC10943402 DOI: 10.1016/j.heliyon.2024.e27328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Rapid advancements in the field of 3D printing in the last several decades have made it possible to produce complex and unique parts with remarkable precision and accuracy. Investigating the use of 3D printing to create various high-performance materials is a relatively new field that is expanding exponentially worldwide. Automobile, biomedical, construction, aerospace, electronics, and metal and alloy industries are among the most prolific users of 3D printing technology. Modern 3D printing technologies, such as polymer matrices that use fiber-reinforced composites (FRCs) to enhance the mechanical qualities of printed components greatly, have been useful to several industries. High stiffness and tensile strength lightweight components are developed from these materials. Fiber-reinforced composites have a wide range of applications, such as military vehicles, fighter aircraft, underwater structures, shelters, and warfare equipment. Fabricating FRCs using fused deposition modeling (FDM) is also advantageous over other 3D printing methods due to its low cost and ease of operation. The impact of different continuous fiber and matrix polymer selections on FRC performance is covered in this review paper. We will also evaluate the important parameters influencing FRC characteristics and review the most recent equipment and methods for fabricating FRCs. Furthermore, the challenges associated with 3D printing fiber-reinforced composites are covered. The constraints of present technology have also been used to identify future research areas.
Collapse
Affiliation(s)
- Noshin Tasnim Tuli
- Industrial and Production Engineering Department, Military Institute of Science and Technology (MIST), Dhaka-1216, Bangladesh
| | - Sinthea Khatun
- Industrial and Production Engineering Department, Military Institute of Science and Technology (MIST), Dhaka-1216, Bangladesh
| | - Adib Bin Rashid
- Industrial and Production Engineering Department, Military Institute of Science and Technology (MIST), Dhaka-1216, Bangladesh
| |
Collapse
|
2
|
Kolodziejczyk A, Wheeler J, Tran NT, Jaye C, Knorr D. Elucidation of Surface Functional Groups Deposited by Electrochemical Surface Treatment of Discontinuous Carbon Fiber by NEXAFS and XPS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18289-18301. [PMID: 38061034 DOI: 10.1021/acs.langmuir.3c02193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Control of carbon fiber heteroatom (oxygen and nitrogen) functionalization using electrochemical oxidation is explored in a variety of electrolyte solutions. Results of X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy indicate that most electrolytes in aqueous and anodic conditions are limited to heteroatom surface content of no more than 13 atomic percent (at %) with a majority C-O and/or C-N moieties; the remaining moieties include an oxidative sequence of carbon (alcohol to ketone to carboxylate) and more complex O- and N-containing groups. The pH of the electrolyte solution was found to be crucial in controlling the ratio of the amount of oxygen to nitrogen functionalities, with the increased basicity of solution resulting in higher nitrogen deposition. The oxidative (and/or thermal) decomposition of many electrolytes during electrochemical treatment can have a major impact on functionalization through changes to pH. Oxidation of carbon fiber in some electrolyte solutions showed higher surface concentrations of heteroatoms (25-30 at %) than most electrolytes (13 at %). Mechanisms were proposed to explain how some electrolytes can exceed 13 at % of heteroatom deposition. Specifically, we hypothesized that electrolytes that contain organic ions with chelation capabilities and moieties that produce additional sites of functionalization can overcome that threshold.
Collapse
Affiliation(s)
- Alec Kolodziejczyk
- DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
- University of Colorado at Boulder, Boulder, Colorado 80309-0401, United States
| | - Jacob Wheeler
- University of Maryland, College Park, Maryland 20742-5031, United States
| | - Ngon T Tran
- DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Cherno Jaye
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Daniel Knorr
- DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| |
Collapse
|
3
|
Hu J, Zhou Z, Guo F, Sun Z, Zhang L, Wang Z, Yin P, Li Y, Fu S. Investigation of recycling effects on the mechanical properties of short carbon and glass fiber reinforced polyetherimide composites. J Appl Polym Sci 2023. [DOI: 10.1002/app.53871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Jin‐Ming Hu
- College of Aerospace Engineering Chongqing University Chongqing 400044 China
| | - Zhi‐Mao Zhou
- CAS Key Laboratory of Green Process and Engineering Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Fang‐Liang Guo
- College of Aerospace Engineering Chongqing University Chongqing 400044 China
| | - Zheng Sun
- College of Aerospace Engineering Chongqing University Chongqing 400044 China
| | - Li Zhang
- School of Chemistry Beihang University Beijing 100191 China
| | - Zi‐Ming Wang
- College of Aerospace Engineering Chongqing University Chongqing 400044 China
| | - Peng‐Gang Yin
- School of Chemistry Beihang University Beijing 100191 China
| | - Yuan‐Qing Li
- College of Aerospace Engineering Chongqing University Chongqing 400044 China
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology Chongqing University Chongqing 400044 China
| | - Shao‐Yun Fu
- College of Aerospace Engineering Chongqing University Chongqing 400044 China
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology Chongqing University Chongqing 400044 China
| |
Collapse
|
4
|
Reuse of Carbon Fibers and a Mechanically Recycled CFRP as Rod-like Fillers for New Composites: Optimization and Process Development. Processes (Basel) 2023. [DOI: 10.3390/pr11020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The rising amount of carbon fiber reinforced polymer (CFRP) composite waste requires new processes for reintroducing waste into the production cycle. In the present research, the objective is the design and study of a reuse process for carbon fibers and CFRP by mechanical recycling consisting of length and width reduction, obtaining rods and reintegrating them as fillers into a polymeric matrix. Preliminary studies are carried out with continuous and discontinuous unidirectional fibers of various lengths. The processing conditions are then optimized, including the length of the reinforcement, the need for a plasma surface treatment and/or for resin post-curing. The resin is thermally characterized by differential scanning calorimetry (DSC), while the composites are mechanically characterized by tensile strength tests, completed by a factorial design. In addition, the composites tested are observed by scanning electron microscopy (SEM) to study the fracture mechanics. Optimal processing conditions have been found to reduce the reinforcement length to 40 mm while maintaining the mechanical properties of continuous reinforcement. Furthermore, the post-curing of the epoxy resin used as matrix is required, but a low-pressure plasma treatment (LPPT) is not recommended on the reinforcement.
Collapse
|
5
|
Cheng H, Guo L, Zheng L, Qian Z, Su S. A closed-loop recycling process for carbon fiber-reinforced polymer waste using thermally activated oxide semiconductors: Carbon fiber recycling, characterization and life cycle assessment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 153:283-292. [PMID: 36174429 DOI: 10.1016/j.wasman.2022.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The objective of this study is to investigate the properties of recycled carbon fiber (rCF) and its environmental impact, with a specific focus on the energy consumption of the recycling process based on the use of thermally activated oxide semiconductors (TASC). The mechanical and surface properties of rCF obtained under the optimal process parameters were characterized. The life cycle assessment method was used to evaluate the environmental impact of a closed-loop recycling process for carbon fiber-reinforced polymer (CFRP) waste using TASC. The results indicated that the decomposition rate of resin was 95.5 %, and no carbonaceous solid was generated. The gaseous produced of the recycling process were mainly CO2 and H2O, and no liquid products were produced. The surface oxidation degree of rCF was relatively slight. COOH was generated on the surface of rCF, which was conducive to improving the interfacial adhesion viscosity with resin. The monofilament tensile strength of rCF was maintained above 97 %. Compared with landfill and incineration, CFRP waste recycling using TASC can make global warming potential, acidification potential and eutrophication potential reduced by 28 %, 32 %, and 25 %, respectively. Ozone layer depletion potential, human toxicity potential and terrestrial ecotoxicity potential in disposing CFRP waste using TASC were 30 %, 21 % and 41 % of that using pyrolysis, respectively. The energy consumption in carbon fiber recycling by TASC was only 23 % of that in virgin carbon fiber manufacturing. TASC is found to be a promising potential strategy for managing CFRP waste.
Collapse
Affiliation(s)
- Huanbo Cheng
- School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing 2311167, PR China.
| | - Lijun Guo
- School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing 2311167, PR China
| | - Lukai Zheng
- School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing 2311167, PR China
| | - Zhengchun Qian
- School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing 2311167, PR China
| | - Songfei Su
- School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing 2311167, PR China
| |
Collapse
|
6
|
Building Sector Issues in about 100 Years: End-Of-Life Scenarios of Carbon-Reinforced Concrete Presented in the Context of a Life Cycle Assessment, Focusing the Carbon Footprint. Processes (Basel) 2022. [DOI: 10.3390/pr10091791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Carbon-reinforced concrete (CRC) has the potential to play a pivotal role in optimizing the built environment and has therefore been experiencing a wave of research and development in the construction industry in recent years. The production of carbon fibers for CRC is energy-intensive, prompting the need to explore circular economy approaches (e.g., recycling at the End-of-Life (EoL)) to optimize the environmental performance of this material. Underdeveloped processes and a resulting lack of primary data regarding the recycling of CRC have hampered a comprehensive sustainability assessment of the novel composite building material. The novelty of this article is the detailed presentation of possible EoL scenarios for CRC and the detailed determination of the respective environmental impacts. This study aims to model EoL options within a Life Cycle Assessment (LCA), focusing on the EoL stage based on ISO 14040/44 using the GaBi ts 10.5.1.124 software and the CML2001 (2016) methodology. The practical relevance of the study lies in the early consideration of the entire life cycle of new materials, such as CRC, already in the design phase. Furthermore, the EoL can have relevant impacts on the environment, and due to an increasing significance of sustainability aspects, this LCA clarifies first approaches for the future of the construction sector in quantitative statements (e.g., CO2 emissions). All data are literature-based and are explained in detail and calculated for our case study with the functional unit of one kilogram of re-usable material (reusable and fully usable “raw” material for further use/ development) from a double wall. The impact assessment was calculated for 11 midpoint categories and related indicators, although the main focus was on Global Warming Potential (GWP). It was found that the highest-quality recycled options for CRC arise when the individual fractions (concrete matrix and carbon fibers) are first broken up, separated and then individually processed. This study focused mainly on the processing of the carbon fibers contained in CRC, for which pyrolysis and mechanical recycling have the strongest potential for industrial application. For the demolition and separation of both the concrete and the carbon fiber fractions, the conventional transport from the demolition site to the stationary processing plant proved to be the main driver of the GWP (1.4 × 10−3 kg CO2e). In the subsequent processing of the carbon fibers, pyrolysis showed a higher GWP (9.7 × 10−3 kg CO2e) than mechanical recycling (3.1 × 10−4 kg CO2e). In addition, the production of one m³ of concrete (C30/37) was compared to a primary raw material concrete fraction. Concrete can be successfully used as a substitute material for the gravel present in the C30/37 concrete. The use of recycled parts in concrete (originating from the concrete used in carbon-reinforced concrete) as a substitute for primary gravel showed a savings of 6.9 kg CO2e per m³ of primary concrete, corresponding to a reduction of 22.5%. The results show that the mechanical recycling of carbon fibers is overall the route with the lowest energy input and emissions. However, compared to pyrolysis, the recycled carbon fibers from mechanical recycling have a lower quality. Therefore, despite the higher energy input, pyrolysis is a more promising approach to close the material cycle. Furthermore, recycled aggregate concrete can reduce emissions by a quarter compared to primary concrete. Finally, this work aimed to provide a basis for further life cycle optimization in the construction sector. In subsequent studies, the EoL must be combined with the production and use stages to depict the entire life cycle, identify possible trade-offs and compare the results with conventional construction methods or materials such as steel-reinforced concrete.
Collapse
|
7
|
Hummel S, Obermeier K, Zier K, Krommes S, Schemme M, Karlinger P. Analysis of Mechanical Properties Related to Fiber Length of Closed-Loop-Recycled Offcuts of a Thermoplastic Fiber Composites (Organo Sheets). MATERIALS 2022; 15:ma15113872. [PMID: 35683169 PMCID: PMC9181684 DOI: 10.3390/ma15113872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023]
Abstract
Increasing demand for energy-efficient means of transport has steadily intensified the trend towards lightweight components. Thermoplastic glass fiber composites (organo sheets) play a major role in the production of functional automotive components. Organo sheets are cut, shaped and functionalized by injection molding to produce hybrid components, such as those used in car door modules. The cutting process produces a considerable amount of production waste, which has thus far been thermally recycled. This study develops a closed mechanical recycling process and analyzes the different steps of the process. The offcuts were shredded using two shredding methods and implemented directly in the injection-molding process. Using tensile tests and impact bending tests, the material properties of the recycled materials were compared with the virgin material. In addition, fiber length degradation via the injection-molding process and the influence of the waterjet-cutting process on the mechanical properties are investigated. Recycled offcuts are both comparable to new material in terms of mechanical properties and usability, and are also economically and ecologically advantageous. Recycling polypropylene waste with glass fiber reinforcement in a closed loop is an effective way to reduce industrial waste in a sustainable and economical production process.
Collapse
Affiliation(s)
- Sabine Hummel
- Department of Plastics Technology, Faculty of Engineering Sciences, Technical University of Applied Sciences Rosenheim, Hochschulstraße 1, 83024 Rosenheim, Germany; (S.H.); (P.K.)
| | - Katharina Obermeier
- Department of Sustainable Engineering & Management, Faculty of Management and Engineering, Technical University of Applied Sciences Rosenheim, Hochschulstraße 1, 83024 Rosenheim, Germany; (K.O.); (K.Z.); (S.K.)
| | - Katja Zier
- Department of Sustainable Engineering & Management, Faculty of Management and Engineering, Technical University of Applied Sciences Rosenheim, Hochschulstraße 1, 83024 Rosenheim, Germany; (K.O.); (K.Z.); (S.K.)
| | - Sandra Krommes
- Department of Sustainable Engineering & Management, Faculty of Management and Engineering, Technical University of Applied Sciences Rosenheim, Hochschulstraße 1, 83024 Rosenheim, Germany; (K.O.); (K.Z.); (S.K.)
| | - Michael Schemme
- Department of Plastics Technology, Faculty of Engineering Sciences, Technical University of Applied Sciences Rosenheim, Hochschulstraße 1, 83024 Rosenheim, Germany; (S.H.); (P.K.)
- Correspondence: ; Tel.: +49-1522-9474643
| | - Peter Karlinger
- Department of Plastics Technology, Faculty of Engineering Sciences, Technical University of Applied Sciences Rosenheim, Hochschulstraße 1, 83024 Rosenheim, Germany; (S.H.); (P.K.)
| |
Collapse
|
8
|
Arif ZU, Khalid MY, Ahmed W, Arshad H, Ullah S. Recycling of the glass/carbon fibre reinforced polymer composites: A step towards the circular economy. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.2015781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, Pakistan
| | - Muhammad Yasir Khalid
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, Pakistan
| | - Waqas Ahmed
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, Pakistan
| | - Hassan Arshad
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, Pakistan
| | - Sibghat Ullah
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, Pakistan
| |
Collapse
|
9
|
The Sustainable City: Advances in Renewable Energy and Energy Saving Systems. ENERGIES 2021. [DOI: 10.3390/en14248382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
According to United Nations data, half of the world’s population lives in cities and forecasts indicate that by the middle of the 21st century, this percentage will have increased to 65%. The increase in the urban population favors the creation of a network of interactions that entails a series of material and energy flows. These cause environmental impacts that affect the quality of life of citizens and the environment as a whole. According to data from the International Energy Agency, cities occupy 3% of the planet’s surface and are responsible for 67% of global energy consumption. The effects caused by this consumption, as well as its impact on the depletion of resources, make it necessary to carry out an exhaustive study of renewable energies and new energy saving systems. This Special Issue aims to present new advances and developments in renewable energy and energy saving systems that allow cities to evolve in a sustainable way.
Collapse
|
10
|
Butenegro JA, Bahrami M, Abenojar J, Martínez MÁ. Recent Progress in Carbon Fiber Reinforced Polymers Recycling: A Review of Recycling Methods and Reuse of Carbon Fibers. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6401. [PMID: 34771926 PMCID: PMC8585427 DOI: 10.3390/ma14216401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 11/25/2022]
Abstract
The rapid increase in the application of carbon fiber reinforced polymer (CFRP) composite materials represents a challenge to waste recycling. The circular economy approach coupled with the possibility of recovering carbon fibers from CFRP waste with similar properties to virgin carbon fibers at a much lower cost and with lower energy consumption motivate the study of CFRP recycling. Mechanical recycling methods allow the obtention of chopped composite materials, while both thermal and chemical recycling methods aim towards recovering carbon fibers. This review examines the three main recycling methods, their processes, and particularities, as well as the reuse of recycled carbon fibers in the manufacture of new composite materials.
Collapse
Affiliation(s)
- José Antonio Butenegro
- Materials Science and Engineering and Chemical Engineering Department, IAAB, University Carlos III Madrid, 28911 Leganés, Spain; (M.B.); (J.A.); (M.Á.M.)
| | - Mohsen Bahrami
- Materials Science and Engineering and Chemical Engineering Department, IAAB, University Carlos III Madrid, 28911 Leganés, Spain; (M.B.); (J.A.); (M.Á.M.)
| | - Juana Abenojar
- Materials Science and Engineering and Chemical Engineering Department, IAAB, University Carlos III Madrid, 28911 Leganés, Spain; (M.B.); (J.A.); (M.Á.M.)
- Mechanical Engineering Department, Universidad Pontificia Comillas, Alberto Aguilera 25, 28015 Madrid, Spain
| | - Miguel Ángel Martínez
- Materials Science and Engineering and Chemical Engineering Department, IAAB, University Carlos III Madrid, 28911 Leganés, Spain; (M.B.); (J.A.); (M.Á.M.)
| |
Collapse
|