1
|
Chang YH, Chong WWF, Liew CS, Wong KY, Tan HY, Woon KS, Tan JP, Mong GR. Unveiling the energy dynamics of plastic and sludge co-pyrolysis: A review and bibliometric exploration on catalysts and bioenergy generation potential. JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS 2025; 186:106885. [DOI: 10.1016/j.jaap.2024.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Vijayan A, Vishnu J, A R, Shankar B, Sambhudevan S. A review on hydroxyapatite fabrication: from powders to additive manufactured scaffolds. Biomater Sci 2025. [PMID: 39808066 DOI: 10.1039/d4bm00972j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Hydroxyapatite (HA), the main inorganic bone component, is the most widely researched bioceramic for bone repair. This paper presents a comprehensive review of recent advancements in HA synthesis methods and their integration into additive manufacturing (AM) processes. Synthesis methodologies discussed include wet, dry, and biomimetic routes, emphasizing their impact on tailoring the physicochemical properties of HA for biomedical applications. The incorporation of dopants and additives during synthesis is explored for optimizing the mechanical, biological, and osteogenic characteristics of HA-based materials. Moreover, the evolution of AM technologies from conventional 3D printing to advanced 4D and 5D printing is detailed, covering material selection, process parameters, and post-processing strategies vital for fabricating intricate, patient-specific scaffolds, implants, and drug delivery systems utilizing HA. The review underscores the importance of achieving precise control over microstructure and porosity to mimic native tissue architectures accurately. Furthermore, emerging applications of HA-based constructs in tissue engineering, regenerative medicine, drug delivery, and orthopedic implants are discussed, highlighting their potential to address critical clinical needs. Despite the glimmer of hope provided by the advent and progress of such AM capabilities, several aspects need to be addressed to develop efficient HA-based bone substitutes, which are explored in detail in this review.
Collapse
Affiliation(s)
- Ananthika Vijayan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
| | - Jithin Vishnu
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Revathi A
- NextGen Precision Health, University of Missouri, Columbia, USA
| | - Balakrishnan Shankar
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Sreedha Sambhudevan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
| |
Collapse
|
3
|
Zhou J, Li M, Han X, Wang B, Zhang C, Cheng Z, Shen Z, Ogugua PC, Zhou C, Pan X, Yang F, Yuan T. Environmental sustainability practice of sewage sludge and low-rank coal co-pyrolysis: A comparative life cycle assessment study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172255. [PMID: 38599412 DOI: 10.1016/j.scitotenv.2024.172255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
This study attempts to bridge the current research gaps related to the environmental burdens of low-rank coal (LRC) and sewage sludge (SS) co-pyrolysis potentially. The life cycle assessment (LCA), energy recovery and sensitivity analysis were investigated for different proportions of LRC and SS (co-)pyrolysis. The results showed that the LRC/SS pyrolysis mitigated the environmental burden with an average improvement of 43 % across 18 impact categories compared with SS pyrolysis. The best net values of energy and carbon credits were identified in SL-4 with -3.36 kWh/kg biochar and -1.10 CO2-eq/kg biochar, respectively. This study firstly proposed an optimal LRC/SS co-feed proportion at 3 to 7, which achieves the acceptable environmental burden and satisfactory energy recovery. Moreover, sensitivity analysis demonstrated this proportion is robust and adaptable. LRC/SS co-pyrolysis is a promising and sustainable alternative for SS disposal, which could meet the imperative of carbon emission mitigation and resource recycling.
Collapse
Affiliation(s)
- Jinyang Zhou
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingyue Li
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xue Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Beili Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chen Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhiwen Cheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Zhemin Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Paul Chinonso Ogugua
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chao Zhou
- Wuhuan Engineering Co. Ltd., Wuhan 430223, China.
| | - Xiaolei Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fan Yang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Tao Yuan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Emerging Technologies for Enhancing Microalgae Biofuel Production: Recent Progress, Barriers, and Limitations. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The world has heavily relied on fossil fuels for decades to supply energy demands. However, the usage of fossil fuels has been strongly correlated with impactful problems, which lead to global warming. Moreover, the excessive use of fossil fuels has led to their rapid depletion. Hence, exploring other renewable and sustainable alternatives to fossil fuels is imperative. One of the most sustainable fossil fuel alternatives is biofuel. Microalgae-based biofuels are receiving the attention of researchers due to their numerous advantages compared with those obtained from other types of feedstocks. Hence, it is essential to explore the recent technologies for biofuel produced from microalgae species and define the possible challenges that might be faced during this process. Therefore, this work presents the recent advancements in biofuel production from microalgae, focusing on emerging technologies such as those using nanomaterials and genetic engineering. This review focuses on the impact of nanoparticles on the harvesting efficiency of various microalgae species and the influence of nanoparticles on biofuel production. The genetic screening performed by genome-scale mutant libraries and their high-throughput screening may assist in developing effective strategies for enhancing microalgal strains and oil production through the modification of enzymes. Furthermore, the barriers that limit the production of biofuels from microalgae are introduced. Even though microalgae-based biofuels are perceived to engage with low negative impacts on the environment, this review paper touches on several environmental issues associated with the cultivation and harvesting of microalgae species. Moreover, the economic and technical feasibility limits the production of microalgae-based biofuels.
Collapse
|