1
|
Estrada-Almeida AG, Castrejón-Godínez ML, Mussali-Galante P, Tovar-Sánchez E, Rodríguez A. Pharmaceutical Pollutants: Ecotoxicological Impacts and the Use of Agro-Industrial Waste for Their Removal from Aquatic Environments. J Xenobiot 2024; 14:1465-1518. [PMID: 39449423 PMCID: PMC11503348 DOI: 10.3390/jox14040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Medicines are pharmaceutical substances used to treat, prevent, or relieve symptoms of different diseases in animals and humans. However, their large-scale production and use worldwide cause their release to the environment. Pharmaceutical molecules are currently considered emerging pollutants that enter water bodies due to inadequate management, affecting water quality and generating adverse effects on aquatic organisms. Hence, different alternatives for pharmaceuticals removal from water have been sought; among them, the use of agro-industrial wastes has been proposed, mainly because of its high availability and low cost. This review highlights the adverse ecotoxicological effects related to the presence of different pharmaceuticals on aquatic environments and analyzes 94 investigations, from 2012 to 2024, on the removal of 17 antibiotics, highlighting sulfamethoxazole as the most reported, as well as 6 non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac and ibuprofen, and 27 pharmaceutical drugs with different pharmacological activities. The removal of these drugs was evaluated using agro-industrial wastes such as wheat straw, mung bean husk, bagasse, bamboo, olive stones, rice straw, pinewood, rice husk, among others. On average, 60% of the agro-industrial wastes were transformed into biochar to be used as a biosorbents for pharmaceuticals removal. The diversity in experimental conditions among the removal studies makes it difficult to stablish which agro-industrial waste has the greatest removal capacity; therefore, in this review, the drug mass removal rate (DMRR) was calculated, a parameter used with comparative purposes. Almond shell-activated biochar showed the highest removal rate for antibiotics (1940 mg/g·h), while cork powder (CP) (10,420 mg/g·h) showed the highest for NSAIDs. Therefore, scientific evidence demonstrates that agro-industrial waste is a promising alternative for the removal of emerging pollutants such as pharmaceuticals substances.
Collapse
Affiliation(s)
- Ana Gabriela Estrada-Almeida
- Especialidad en Gestión Integral de Residuos, Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| |
Collapse
|
2
|
Grecchi S, Bonetti G, Emanuele E, Ludvík J, Koláčná L, Liška A, Hromadová M, Arnaboldi S, Cirilli R, Mussini PR, Benincori T. Designing Powerful Biindole-Based Inherently Chiral Selectors: Enhancing Enantiodiscrimination by Core Functionalization with Additional Coordination Elements. Chemistry 2024; 30:e202303530. [PMID: 38517291 DOI: 10.1002/chem.202303530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 03/23/2024]
Abstract
Among inherently chiral selectors of axial stereogenicity, usually resulting in very good enantiodiscrimination performances, the biindole-based family has the additional advantage of very easy functionalization of the two nitrogen atoms with a variety of substituents with desirable properties. Aiming to evaluate the possibility of exploiting such feature to enhance the enantiodiscrimination ability of the archetype structure, a series of three inherently chiral monomers were designed and synthesized, characterised by a 2,2'-biindole atropisomeric core conjugated to bithiophene wings enabling fast and regular electrooligomerization, and functionalised at the nitrogen atoms with an ethyl, a methoxyethyl, or a hydroxyethyl substituent. Nitrogen alkylation was also exploited to obtain for the first time the chemical resolution of the biindole selectors without employing chiral HPLC. The enantiodiscrimination ability of the selector series was comparatively evaluated in proof-of-concept chiral voltammetry experiments with a "benchmark" chiral ferrocenyl probe as well as with chiral non-steroidal anti-inflammatory drugs naproxen and ketoprofen. The large enantiomer potential differences for all probes increased in the ethyl < methoxyethyl ≪ hydroxyethyl sequence of selector substituents, supporting our assumption on the beneficial role of an additional coordination element. The powerful hydroxyethyl selector was also applied to ketoprofen in a commercial drug matrix.
Collapse
Affiliation(s)
- Sara Grecchi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Giorgia Bonetti
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Elisa Emanuele
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
- Current Address: Dipartimento di Energia, Politecnico di Milano, via Lambruschini 4, 20156, Milano, Italy
| | - Jiří Ludvík
- Department of Molecular Electrochemistry and Catalysis, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Lucie Koláčná
- Department of Molecular Electrochemistry and Catalysis, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Alan Liška
- Department of Molecular Electrochemistry and Catalysis, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Magdaléna Hromadová
- Department of Electrochemistry at the Nanoscale, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Serena Arnaboldi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Roberto Cirilli
- Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy
| | - Patrizia R Mussini
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Tiziana Benincori
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11, 22100, Como, Italy
| |
Collapse
|
3
|
Sravan JS, Matsakas L, Sarkar O. Advances in Biological Wastewater Treatment Processes: Focus on Low-Carbon Energy and Resource Recovery in Biorefinery Context. Bioengineering (Basel) 2024; 11:281. [PMID: 38534555 DOI: 10.3390/bioengineering11030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Advancements in biological wastewater treatment with sustainable and circularity approaches have a wide scope of application. Biological wastewater treatment is widely used to remove/recover organic pollutants and nutrients from a diverse wastewater spectrum. However, conventional biological processes face challenges, such as low efficiency, high energy consumption, and the generation of excess sludge. To overcome these limitations, integrated strategies that combine biological treatment with other physical, chemical, or biological methods have been developed and applied in recent years. This review emphasizes the recent advances in integrated strategies for biological wastewater treatment, focusing on their mechanisms, benefits, challenges, and prospects. The review also discusses the potential applications of integrated strategies for diverse wastewater treatment towards green energy and resource recovery, along with low-carbon fuel production. Biological treatment methods, viz., bioremediation, electro-coagulation, electro-flocculation, electro-Fenton, advanced oxidation, electro-oxidation, bioelectrochemical systems, and photo-remediation, are summarized with respect to non-genetically modified metabolic reactions. Different conducting materials (CMs) play a significant role in mass/charge transfer metabolic processes and aid in enhancing fermentation rates. Carbon, metal, and nano-based CMs hybridization in different processes provide favorable conditions to the fermentative biocatalyst and trigger their activity towards overcoming the limitations of the conventional process. The emerging field of nanotechnology provides novel additional opportunities to surmount the constraints of conventional process for enhanced waste remediation and resource valorization. Holistically, integrated strategies are promising alternatives for improving the efficiency and effectiveness of biological wastewater treatment while also contributing to the circular economy and environmental protection.
Collapse
Affiliation(s)
- J Shanthi Sravan
- Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| | - Omprakash Sarkar
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| |
Collapse
|
4
|
Barros de Souza A, Ali I, van de Goor T, Dewil R, Cabooter D. Comprehensive two-dimensional liquid chromatography with high resolution mass spectrometry to investigate the photoelectrochemical degradation of environmentally relevant pharmaceuticals and their degradation products in water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:120023. [PMID: 38181683 DOI: 10.1016/j.jenvman.2024.120023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
The widespread presence of organic micropollutants in the environment reflects the inability of traditional wastewater treatment plants to remove them. In this context, advanced oxidation processes (AOPs) have emerged as promising quaternary wastewater treatment technologies since they efficiently degrade recalcitrant components by generating highly reactive free radicals. Nonetheless, the chemical characterization of potentially harmful byproducts is essential to avoid the contamination of natural water bodies with hazardous substances. Given the complexity of wastewater matrices, the implementation of comprehensive analytical methodologies is required. In this work, the simultaneous photoelectrochemical degradation of seven environmentally relevant pharmaceuticals and one metabolite from the EU Watch List 2020/1161 was examined in ultrapure water and simulated wastewater, achieving excellent removal efficiencies (overall >95%) after 180 min treatment. The reactor unit was linked to an online LC sample manager, allowing for automated sampling every 15 min and near real-time process monitoring. Online comprehensive two-dimensional liquid chromatography (LC × LC) coupled with high resolution mass spectrometry (HRMS) was subsequently used to tentatively identify degradation products after photoelectrochemical degradation. Two reversed-phase liquid chromatography (RPLC) columns were used: an SB-C18 column operated with 5 mM ammonium formate at pH 5.8 (1A) and methanol (1B) as the mobile phases in the first dimension and an SB-Aq column using acidified water at pH 3.1 (2A) and acetonitrile (2B) as the mobile phases in the second dimension. This resulted in a five-fold increase in peak capacity compared to one-dimensional LC while maintaining the same total analysis time of 50 min. The LC x LC method allowed the tentative identification of 12 venlafaxine, 7 trimethoprim and 10 ciprofloxacin intermediates. Subsequent toxicity predictions suggested that some of these byproducts were potentially harmful. This study presents an effective hybrid technology for the simultaneous removal of pharmaceuticals from contaminated wastewater matrices and demonstrates how multidimensional liquid chromatography techniques can be applied to better understand the degradation mechanisms after the treatment of micropollutants with AOPs.
Collapse
Affiliation(s)
- Allisson Barros de Souza
- Agilent Technologies Deutschland, Hewlett-Packard-Strasse 8, 76337, Waldbronn, Germany; KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000, Leuven, Belgium
| | - Izba Ali
- InOpSys - Mobiele Waterzuivering voor Chemie en Farma, Maanstraat 9b, 2800, Mechelen, Belgium; KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Tom van de Goor
- Agilent Technologies Deutschland, Hewlett-Packard-Strasse 8, 76337, Waldbronn, Germany
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium; University of Oxford, Department of Engineering Science, Parks Road, Oxford, OX1 3PJ, United Kingdom
| | - Deirdre Cabooter
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
5
|
Rodionova OY, Pomerantsev AL, Rutledge DN. Kinetic Model of Diclofenac Degradation Developed Using Multivariate Curve Resolution Method. Molecules 2022; 27:molecules27227904. [PMID: 36432005 PMCID: PMC9699027 DOI: 10.3390/molecules27227904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
This study presents the kinetic modeling of the natural long-term aging of the pharmaceutical substance as well as the intact tablets of Diclofenac. Datasets are collections of near-infrared spectra acquired from the intact tablets packed in plastic blisters and the spectra of the pure substance. Fresh samples and samples at different stages of degradation are analyzed. No methods of accelerated aging were applied. Multi-step application of MCR-ALS in its soft version followed by the kinetic modeling of the results helps to propose a generic degradation mechanism; which includes: a global kinetic model; approximations of the NIR spectra of the intermediate and product; rough estimates of rate constants. We study tablets in blister packs; exactly as they are presented in pharmacies; and this is important from a practical point of view.
Collapse
Affiliation(s)
- Oxana Ye. Rodionova
- Semenov Federal Research Center for Chemical Physics RAS, Kosygin 4, 119991 Moscow, Russia
- Correspondence:
| | - Alexey L. Pomerantsev
- Semenov Federal Research Center for Chemical Physics RAS, Kosygin 4, 119991 Moscow, Russia
| | - Douglas N. Rutledge
- Faculté de Pharmacie, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
- Muséum National d’Histoire Naturelle, 63 rue Buffon, 75005 Paris, France
| |
Collapse
|
6
|
Electrochemical Oxidation of Anastrozole over a BDD Electrode: Role of Operating Parameters and Water Matrix. Processes (Basel) 2022. [DOI: 10.3390/pr10112391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The electrochemical oxidation (EO) of the breast-cancer drug anastrozole (ANZ) is studied in this work. The role of various operating parameters, such as current density (6.25 and 12.5 mA cm−2), pH (3–10), ANZ concentration (0.5–2 mg L−1), nature of supporting electrolytes, water composition, and water matrix, have been evaluated. ANZ removal of 82.4% was achieved at 1 mg L−1 initial concentration after 90 min of reaction at 6.25 mA cm−2 and 0.1 M Na2SO4. The degradation follows pseudo-first-order kinetics with the apparent rate constant, kapp, equal to 0.022 min−1. The kapp increases with increasing current density and decreasing solution pH. The addition of chloride in the range 0–250 mg L−1 positively affects the removal of ANZ. However, chloride concentrations above 250 mg L−1 have a detrimental effect. The presence of bicarbonate or organic matter has a slightly negative but not significant effect on the process. The EO of ANZ is compared to its degradation by solar photo-Fenton, and a preliminary economic analysis is also performed.
Collapse
|
7
|
Current and Future Trends in Environmental Electrochemistry for Wastewater Treatment. WATER 2022. [DOI: 10.3390/w14111817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In recent years, the demand for high-quality water has constantly been increasing, while at the same time, the legislations regarding wastewater reuse are becoming stricter [...]
Collapse
|
8
|
Abstract
The viability of the Electro-Fenton (EF) process in the selective degradation of penicillin G (PenG) in complex solutions has been studied. The role of the anode material (boron-doped diamond (BDD) or mixed metal oxide (MMO)) and the cathode 3D support (foam or mesh), as well as the synergistic effect of UVC light irradiation (photoelectron-Fenton, PEF), have been evaluated. The results show that Pen G can be efficiently and selectively removed by EF, obtaining higher PenG removal rates when using the BDD anode (100%) than when using the MMO anode (75.5%). Additionally, mineralization is not favored under the experimental conditions tested (pH 3, 5 mA cm−2), since both aromatic and carboxylic acids accumulate in the reaction system as final products. In this regard, the EF-treated solution presents a high biological oxygen demand and a low percentage of Vibrio fischeri inhibition, which leads to high biodegradability and low toxicity of this final effluent. Furthermore, the combination with UVC radiation in the PEF process shows a clear synergistic effect on the degradation of penicillin G: 166.67% and 83.18% using MMO and BBD anodes, respectively. The specific energy required to attain the complete removal of PenG and high inhibition of the antibiotic effect is less than 0.05 Ah dm−3. This confirms that PEF can be efficiently used as a pretreatment of conventional wastewater treatment plants to decrease the chemical risk of complex solutions polluted with antibiotics.
Collapse
|
9
|
Abstract
This study investigated the application of an advanced electrooxidation process with three-dimensional tin oxide deposited onto a titanium plate anode, named 3-D Ti/SnO2, for the degradation and mineralization of one of the most important emerging contaminants with cytostatic properties, doxorubicin (DOX). The anode was synthesized using a commercial Ti plate, with corrosion control in acidic medium, used as a substrate for SnO2 deposition by the spin-coating method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses revealed that porous SnO2 was obtained, and the rutile phase of TiO2 was identified as an intermediary substrate onto the Ti plate. The results of CV analysis allowed us to determine the optimal operating conditions for the electrooxidation process conducted under a constant potential regime, controlled by the electron transfer or the diffusion mechanisms, involving hydroxyl radicals. The determination of UV–VIS spectra, total organic carbon (TOC), and chemical oxygen demand (COD) allowed us to identify the degradation mechanism and pathway of DOX onto the 3-D Ti/SnO2 anode. The effective degradation and mineralization of DOX contained in water by the electrooxidation process with this new 3-D dimensionally stable anode (DSA) was demonstrated in this study.
Collapse
|
10
|
Using Sawdust Derived Biochar as a Novel 3D Particle Electrode for Micropollutants Degradation. WATER 2022. [DOI: 10.3390/w14030357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This work examined the use of a 3D combined electrochemical process based on particle electrodes from sawdust-derived biochar pyrolized at T = 550–850 °C to remove persistent pollutants. The as-prepared biochar was characterized by scanning electron microscopy with an X-ray energy dispersive spectrometer (SEM/EDS), nitrogen adsorption (BET method) and X-ray diffraction (XRD) techniques. The use of sawdust biochar pyrolized at 650 °C led to a significant increase in efficiency against the sum of conventional 2D electrochemical systems and adsorption, and the synergy index estimated equal to 74.5% at optimum conditions. Sulfamethoxazole (SMX) removal was favored by increasing particle electrode loading. Despite that, the reaction was slightly favored in near-neutral conditions; the system retained most of its activity in the pH range 3–10. The proposed 3D system could degrade different micropollutants, namely SMX, Bisphenol A (BPA), Propylparaben (PP), and Piroxicam (PR). Of particular interest was that no significant reduction in degradation was observed in the case of complex or real water matrices. In addition, the system retained its efficiency regarding SMX removal after five sequential experiments in the 3D combined electrochemical process. However, further investigation is needed to estimate the contribution of the different mechanisms of micropollutant removal in the proposed system.
Collapse
|
11
|
Two-Dimensional Nanomaterials for the Removal of Pharmaceuticals from Wastewater: A Critical Review. Processes (Basel) 2021. [DOI: 10.3390/pr9122160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The removal of pharmaceuticals from wastewater is critical due to their considerable risk on ecosystems and human health. Additionally, they are resistant to conventional chemical and biological remediation methods. Two-dimensional nanomaterials are a promising approach to face this challenge due to their combination of high surface areas, high electrical conductivities, and partially optical transparency. This review discusses the state-of-the-art concerning their use as adsorbents, oxidation catalysts or photocatalysts, and electrochemical catalysts for water treatment purposes. The bibliographic search bases upon academic databases including articles published until August 2021. Regarding adsorption, high removal capacities (>200 mg g−1) and short equilibrium times (<30 min) are reported for molybdenum disulfide, metal-organic frameworks, MXenes, and graphene oxide/magnetite nanocomposites, attributed to a strong adsorbate-adsorbent chemical interaction. Concerning photocatalysis, MXenes and carbon nitride heterostructures show enhanced charge carriers separation, favoring the generation of reactive oxygen species to degrade most pharmaceuticals. Peroxymonosulfate activation via pure or photo-assisted catalytic oxidation is promising to completely degrade many compounds in less than 30 min. Future work should be focused on the exploration of greener synthesis methods, regeneration, and recycling at the end-of-life of two-dimensional materials towards their successful large-scale production and application.
Collapse
|
12
|
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29205, United States
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| |
Collapse
|
13
|
Electrochemical Technologies to Decrease the Chemical Risk of Hospital Wastewater and Urine. Molecules 2021; 26:molecules26226813. [PMID: 34833906 PMCID: PMC8621562 DOI: 10.3390/molecules26226813] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
The inefficiency of conventional biological processes to remove pharmaceutical compounds (PhCs) in wastewater is leading to their accumulation in aquatic environments. These compounds are characterized by high toxicity, high antibiotic activity and low biodegradability, and their presence is causing serious environmental risks. Because much of the PhCs consumed by humans are excreted in the urine, hospital effluents have been considered one of the main routes of entry of PhCs into the environment. In this work, a critical review of the technologies employed for the removal of PhCs in hospital wastewater was carried out. This review provides an overview of the current state of the developed technologies for decreasing the chemical risks associated with the presence of PhCs in hospital wastewater or urine in the last years, including conventional treatments (filtration, adsorption, or biological processes), advanced oxidation processes (AOPs) and electrochemical advanced oxidation processes (EAOPs).
Collapse
|