1
|
Hardeland R. Redox Biology of Melatonin: Discriminating Between Circadian and Noncircadian Functions. Antioxid Redox Signal 2022; 37:704-725. [PMID: 35018802 PMCID: PMC9587799 DOI: 10.1089/ars.2021.0275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022]
Abstract
Melatonin has not only to be seen as a regulator of circadian clocks. In addition to its chronobiotic functions, it displays other actions, especially in cell protection. This includes antioxidant, anti-inflammatory, and mitochondria-protecting effects. Although protection is also modulated by the circadian system, the respective actions of melatonin can be distinguished and differ with regard to dose requirements in therapeutic settings. It is the aim of this article to outline these differences in terms of function, signaling, and dosage. Focus has been placed on both the nexus and the dissecting properties between circadian and noncircadian mechanisms. This has to consider details beyond the classic view of melatonin's role, such as widespread synthesis in extrapineal tissues, formation in mitochondria, effects on the mitochondrial permeability transition pore, and secondary signaling, for example, via upregulation of sirtuins and by regulating noncoding RNAs, especially microRNAs. The relevance of these findings, the differences and connections between circadian and noncircadian functions of melatonin shed light on the regulation of inflammation, including macrophage/microglia polarization, damage-associated molecular patterns, avoidance of cytokine storms, and mitochondrial functions, with numerous consequences to antioxidative protection, that is, aspects of high actuality with regard to deadly viral and bacterial diseases. Antioxid. Redox Signal. 37, 704-725.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Goettingen, Germany
| |
Collapse
|
2
|
Melatonin and the Programming of Stem Cells. Int J Mol Sci 2022; 23:ijms23041971. [PMID: 35216086 PMCID: PMC8879213 DOI: 10.3390/ijms23041971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Melatonin interacts with various types of stem cells, in multiple ways that comprise stimulation of proliferation, maintenance of stemness and self-renewal, protection of survival, and programming toward functionally different cell lineages. These various properties are frequently intertwined but may not be always jointly present. Melatonin typically stimulates proliferation and transition to the mature cell type. For all sufficiently studied stem or progenitor cells, melatonin’s signaling pathways leading to expression of respective morphogenetic factors are discussed. The focus of this article will be laid on the aspect of programming, particularly in pluripotent cells. This is especially but not exclusively the case in neural stem cells (NSCs) and mesenchymal stem cells (MSCs). Concerning developmental bifurcations, decisions are not exclusively made by melatonin alone. In MSCs, melatonin promotes adipogenesis in a Wnt (Wingless-Integration-1)-independent mode, but chondrogenesis and osteogenesis Wnt-dependently. Melatonin upregulates Wnt, but not in the adipogenic lineage. This decision seems to depend on microenvironment and epigenetic memory. The decision for chondrogenesis instead of osteogenesis, both being Wnt-dependent, seems to involve fibroblast growth factor receptor 3. Stem cell-specific differences in melatonin and Wnt receptors, and contributions of transcription factors and noncoding RNAs are outlined, as well as possibilities and the medical importance of re-programming for transdifferentiation.
Collapse
|
3
|
Hardeland R. Melatonin and Microglia. Int J Mol Sci 2021; 22:ijms22158296. [PMID: 34361062 PMCID: PMC8347578 DOI: 10.3390/ijms22158296] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Melatonin interacts in multiple ways with microglia, both directly and, via routes of crosstalk with astrocytes and neurons, indirectly. These effects of melatonin are of relevance in terms of antioxidative protection, not only concerning free-radical detoxification, but also in prevention of processes that cause, promote, or propagate oxidative stress and neurodegeneration, such as overexcitation, toxicological insults, viral and bacterial infections, and sterile inflammation of different grades. The immunological interplay in the CNS, with microglia playing a central role, is of high complexity and includes signaling toward endothelial cells and other leukocytes by cytokines, chemokines, nitric oxide, and eikosanoids. Melatonin interferes with these processes in multiple signaling routes and steps. In addition to canonical signal transduction by MT1 and MT2 melatonin receptors, secondary and tertiary signaling is of relevance and has to be considered, e.g., via the upregulation of sirtuins and the modulation of pro- and anti-inflammatory microRNAs. Many details concerning the modulation of macrophage functionality by melatonin are obviously also applicable to microglial cells. Of particular interest is the polarization toward M2 subtypes instead of M1, i.e., in favor of being anti-inflammatory at the expense of proinflammatory activities, which is well-documented in macrophages but also applies to microglia.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
4
|
Bilcke G, Osuna-Cruz CM, Santana Silva M, Poulsen N, D'hondt S, Bulankova P, Vyverman W, De Veylder L, Vandepoele K. Diurnal transcript profiling of the diatom Seminavis robusta reveals adaptations to a benthic lifestyle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:315-336. [PMID: 33901335 DOI: 10.1111/tpj.15291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Coastal regions contribute an estimated 20% of annual gross primary production in the oceans, despite occupying only 0.03% of their surface area. Diatoms frequently dominate coastal sediments, where they experience large variations in light regime resulting from the interplay of diurnal and tidal cycles. Here, we report on an extensive diurnal transcript profiling experiment of the motile benthic diatom Seminavis robusta. Nearly 90% (23 328) of expressed protein-coding genes and 66.9% (1124) of expressed long intergenic non-coding RNAs showed significant expression oscillations and are predominantly phasing at night with a periodicity of 24 h. Phylostratigraphic analysis found that rhythmic genes are enriched in highly conserved genes, while diatom-specific genes are predominantly associated with midnight expression. Integration of genetic and physiological cell cycle markers with silica depletion data revealed potential new silica cell wall-associated gene families specific to diatoms. Additionally, we observed 1752 genes with a remarkable semidiurnal (12-h) periodicity, while the expansion of putative circadian transcription factors may reflect adaptations to cope with highly unpredictable external conditions. Taken together, our results provide new insights into the adaptations of diatoms to the benthic environment and serve as a valuable resource for the study of diurnal regulation in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Gust Bilcke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, 9000, Belgium
| | - Cristina Maria Osuna-Cruz
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
| | - Marta Santana Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Nicole Poulsen
- B CUBE Center for Molecular Bioengineering, Technical University of Dresden, Tatzberg 41, Dresden, 01307, Germany
| | - Sofie D'hondt
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Petra Bulankova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Wim Vyverman
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
| |
Collapse
|
5
|
Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019; 20:ijms20051223. [PMID: 30862067 PMCID: PMC6429360 DOI: 10.3390/ijms20051223] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aging and various age-related diseases are associated with reductions in melatonin secretion, proinflammatory changes in the immune system, a deteriorating circadian system, and reductions in sirtuin-1 (SIRT1) activity. In non-tumor cells, several effects of melatonin are abolished by inhibiting SIRT1, indicating mediation by SIRT1. Melatonin is, in addition to its circadian and antioxidant roles, an immune stimulatory agent. However, it can act as either a pro- or anti-inflammatory regulator in a context-dependent way. Melatonin can stimulate the release of proinflammatory cytokines and other mediators, but also, under different conditions, it can suppress inflammation-promoting processes such as NO release, activation of cyclooxygenase-2, inflammasome NLRP3, gasdermin D, toll-like receptor-4 and mTOR signaling, and cytokine release by SASP (senescence-associated secretory phenotype), and amyloid-β toxicity. It also activates processes in an anti-inflammatory network, in which SIRT1 activation, upregulation of Nrf2 and downregulation of NF-κB, and release of the anti-inflammatory cytokines IL-4 and IL-10 are involved. A perhaps crucial action may be the promotion of macrophage or microglia polarization in favor of the anti-inflammatory phenotype M2. In addition, many factors of the pro- and anti-inflammatory networks are subject to regulation by microRNAs that either target mRNAs of the respective factors or upregulate them by targeting mRNAs of their inhibitor proteins.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
6
|
Xia Y, Chen S, Zeng S, Zhao Y, Zhu C, Deng B, Zhu G, Yin Y, Wang W, Hardeland R, Ren W. Melatonin in macrophage biology: Current understanding and future perspectives. J Pineal Res 2019; 66:e12547. [PMID: 30597604 DOI: 10.1111/jpi.12547] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Abstract
Melatonin is a ubiquitous hormone found in various organisms and highly affects the function of immune cells. In this review, we summarize the current understanding of the significance of melatonin in macrophage biology and the beneficial effects of melatonin in macrophage-associated diseases. Enzymes associated with synthesis of melatonin, as well as membrane receptors for melatonin, are found in macrophages. Indeed, melatonin influences the phenotype polarization of macrophages. Mechanistically, the roles of melatonin in macrophages are related to several cellular signaling pathways, such as NF-κB, STATs, and NLRP3/caspase-1. Notably, miRNAs (eg, miR-155/-34a/-23a), cellular metabolic pathways (eg, α-KG, HIF-1α, and ROS), and mitochondrial dynamics and mitophagy are also involved. Thus, melatonin modulates the development and progression of various macrophage-associated diseases, such as cancer and rheumatoid arthritis. This review provides a better understanding about the importance of melatonin in macrophage biology and macrophage-associated diseases.
Collapse
Affiliation(s)
- Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Siyuan Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Sijing Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuanyuan Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Congrui Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|