1
|
Vogl C, Karapetiants M, Yıldırım B, Kjartansdóttir H, Kosiol C, Bergman J, Majka M, Mikula LC. Inference of genomic landscapes using ordered Hidden Markov Models with emission densities (oHMMed). BMC Bioinformatics 2024; 25:151. [PMID: 38627634 PMCID: PMC11021005 DOI: 10.1186/s12859-024-05751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Genomes are inherently inhomogeneous, with features such as base composition, recombination, gene density, and gene expression varying along chromosomes. Evolutionary, biological, and biomedical analyses aim to quantify this variation, account for it during inference procedures, and ultimately determine the causal processes behind it. Since sequential observations along chromosomes are not independent, it is unsurprising that autocorrelation patterns have been observed e.g., in human base composition. In this article, we develop a class of Hidden Markov Models (HMMs) called oHMMed (ordered HMM with emission densities, the corresponding R package of the same name is available on CRAN): They identify the number of comparably homogeneous regions within autocorrelated observed sequences. These are modelled as discrete hidden states; the observed data points are realisations of continuous probability distributions with state-specific means that enable ordering of these distributions. The observed sequence is labelled according to the hidden states, permitting only neighbouring states that are also neighbours within the ordering of their associated distributions. The parameters that characterise these state-specific distributions are inferred. RESULTS We apply our oHMMed algorithms to the proportion of G and C bases (modelled as a mixture of normal distributions) and the number of genes (modelled as a mixture of poisson-gamma distributions) in windows along the human, mouse, and fruit fly genomes. This results in a partitioning of the genomes into regions by statistically distinguishable averages of these features, and in a characterisation of their continuous patterns of variation. In regard to the genomic G and C proportion, this latter result distinguishes oHMMed from segmentation algorithms based in isochore or compositional domain theory. We further use oHMMed to conduct a detailed analysis of variation of chromatin accessibility (ATAC-seq) and epigenetic markers H3K27ac and H3K27me3 (modelled as a mixture of poisson-gamma distributions) along the human chromosome 1 and their correlations. CONCLUSIONS Our algorithms provide a biologically assumption free approach to characterising genomic landscapes shaped by continuous, autocorrelated patterns of variation. Despite this, the resulting genome segmentation enables extraction of compositionally distinct regions for further downstream analyses.
Collapse
Affiliation(s)
- Claus Vogl
- Department of Biomedical Sciences and Pathobiology, Vetmeduni Vienna, Veterinärplatz 1, Vienna, Austria.
- Vienna Graduate School of Population Genetics, Vienna, Austria.
| | - Mariia Karapetiants
- Department of Biomedical Sciences and Pathobiology, Vetmeduni Vienna, Veterinärplatz 1, Vienna, Austria
| | - Burçin Yıldırım
- Department of Biomedical Sciences and Pathobiology, Vetmeduni Vienna, Veterinärplatz 1, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
- Department of Ecology and Genetics, Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Hrönn Kjartansdóttir
- Department of Biomedical Sciences and Pathobiology, Vetmeduni Vienna, Veterinärplatz 1, Vienna, Austria
| | - Carolin Kosiol
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland, UK
| | - Juraj Bergman
- Department of Biology, Centre for Biodiversity Dynamics in a Changing World (BIOCHANGE) & Section for Ecoinformatics and Biodiversity, Aarhus University, Aarhus, Denmark
| | | | - Lynette Caitlin Mikula
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland, UK.
| |
Collapse
|
2
|
Francois AK, Rohani A, Loftus M, Dochnal S, Hrit J, McFarlane S, Whitford A, Lewis A, Krakowiak P, Boutell C, Rothbart SB, Kashatus D, Cliffe AR. Single-genome analysis reveals a heterogeneous association of the herpes simplex virus genome with H3K27me2 and the reader PHF20L1 following infection of human fibroblasts. mBio 2024; 15:e0327823. [PMID: 38411116 PMCID: PMC11005365 DOI: 10.1128/mbio.03278-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
The fate of herpesvirus genomes following entry into different cell types is thought to regulate the outcome of infection. For the Herpes simplex virus 1 (HSV-1), latent infection of neurons is characterized by association with repressive heterochromatin marked with Polycomb silencing-associated lysine 27 methylation on histone H3 (H3K27me). However, whether H3K27 methylation plays a role in repressing lytic gene expression in non-neuronal cells is unclear. To address this gap in knowledge, and with consideration that the fate of the viral genome and outcome of HSV-1 infection could be heterogeneous, we developed an assay to quantify the abundance of histone modifications within single viral genome foci of infected fibroblasts. Using this approach, combined with bulk epigenetic techniques, we were unable to detect any role for H3K27me3 during HSV-1 lytic infection of fibroblasts. By contrast, we could detect the lesser studied H3K27me2 on a subpopulation of viral genomes, which was consistent with a role for H3K27 demethylases in promoting lytic gene expression. In addition, viral genomes co-localized with the H3K27me2 reader protein PHF20L1, and this association was enhanced by inhibition of the H3K27 demethylases UTX and JMJD3. Notably, targeting of H3K27me2 to viral genomes was enhanced following infection with a transcriptionally defective virus in the absence of Promyelocytic leukemia nuclear bodies. Collectively, these studies implicate a role for H3K27me2 in fibroblast-associated HSV genome silencing in a manner dependent on genome sub-nuclear localization and transcriptional activity. IMPORTANCE Investigating the potential mechanisms of gene silencing for DNA viruses in different cell types is important to understand the differential outcomes of infection, particularly for viruses like herpesviruses that can undergo distinct types of infection in different cell types. In addition, investigating chromatin association with viral genomes informs on the mechanisms of epigenetic regulation of DNA processes. However, there is a growing appreciation for heterogeneity in the outcome of infection at the single cell, and even single viral genome, level. Here we describe a novel assay for quantifying viral genome foci with chromatin proteins and show that a portion of genomes are targeted for silencing by H3K27me2 and associate with the reader protein PHF20L1. This study raises important questions regarding the mechanism of H3K27me2-specific targeting to viral genomes, the contribution of epigenetic heterogeneity to herpesvirus infection, and the role of PHF20L1 in regulating the outcome of DNA virus infection.
Collapse
Affiliation(s)
- Alison K. Francois
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Ali Rohani
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Matt Loftus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Sara Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Joel Hrit
- Department of Epigenetics, Van Andel Institute, Grand Rapids, USA
| | - Steven McFarlane
- MRC - University of Glasgow, Centre for Virus Research, Glasgow, United Kingdom
| | - Abigail Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Anna Lewis
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Patryk Krakowiak
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Chris Boutell
- MRC - University of Glasgow, Centre for Virus Research, Glasgow, United Kingdom
| | | | - David Kashatus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Francois AK, Rohani A, Loftus M, Dochnal S, Hrit J, McFarlane S, Whitford A, Lewis A, Krakowiak P, Boutell C, Rothbart SB, Kashatus D, Cliffe AR. Single-genome analysis reveals heterogeneous association of the Herpes Simplex Virus genome with H3K27me2 and the reader PHF20L1 following infection of human fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569766. [PMID: 38076966 PMCID: PMC10705572 DOI: 10.1101/2023.12.03.569766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The fate of herpesvirus genomes following entry into different cell types is thought to regulate the outcome of infection. For the Herpes simplex virus 1 (HSV-1), latent infection of neurons is characterized by association with repressive heterochromatin marked with Polycomb silencing-associated lysine 27 methylation on histone H3 (H3K27me). However, whether H3K27 methylation plays a role in repressing lytic gene expression in non-neuronal cells is unclear. To address this gap in knowledge, and with consideration that the fate of the viral genome and outcome of HSV-1 infection could be heterogeneous, we developed an assay to quantify the abundance of histone modifications within single viral genome foci of infected fibroblasts. Using this approach, combined with bulk epigenetic techniques, we were unable to detect any role for H3K27me3 during HSV-1 lytic infection of fibroblasts. In contrast, we could detect the lesser studied H3K27me2 on a subpopulation of viral genomes, which was consistent with a role for H3K27 demethylases in promoting lytic gene expression. This was consistent with a role for H3K27 demethylases in promoting lytic gene expression. In addition, viral genomes co-localized with the H3K27me2 reader protein PHF20L1, and this association was enhanced by inhibition of the H3K27 demethylases UTX and JMJD3. Notably, targeting of H3K27me2 to viral genomes was enhanced following infection with a transcriptionally defective virus in the absence of Promyelocytic leukemia nuclear bodies. Collectively, these studies implicate a role for H3K27me2 in fibroblast-associated HSV genome silencing in a manner dependent on genome sub-nuclear localization and transcriptional activity.
Collapse
Affiliation(s)
- Alison K Francois
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Ali Rohani
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Matt Loftus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Sara Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Joel Hrit
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503
| | - Steven McFarlane
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland
| | - Abigail Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Anna Lewis
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Patryk Krakowiak
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland
| | - Scott B. Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503
| | - David Kashatus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Anna R Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| |
Collapse
|
4
|
Shi T, Bai Y, Wu X, Wang Y, Iqbal S, Tan W, Ni Z, Gao Z. PmAGAMOUS recruits polycomb protein PmLHP1 to regulate single-pistil morphogenesis in Japanese apricot. PLANT PHYSIOLOGY 2023; 193:466-482. [PMID: 37204822 DOI: 10.1093/plphys/kiad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/20/2023]
Abstract
Japanese apricot (Prunus mume Sieb. et Zucc.) is a traditional fruit tree with a long history. Multiple pistils (MP) lead to the formation of multiple fruits, decreasing fruit quality and yield. In this study, the morphology of flowers was observed at 4 stages of pistil development: undifferentiated stage (S1), predifferentiation stage (S2), differentiation stage (S3), and late differentiation stage (S4). In S2 and S3, the expression of PmWUSCHEL (PmWUS) in the MP cultivar was significantly higher than that in the single-pistil (SP) cultivar, and the gene expression of its inhibitor, PmAGAMOUS (PmAG), also showed the same trend, indicating that other regulators participate in the regulation of PmWUS during this period. Chromatin immunoprecipitation-qPCR (ChIP-qPCR) showed that PmAG could bind to the promoter and the locus of PmWUS, and H3K27me3 repressive marks were also detected at these sites. The SP cultivar exhibited an elevated level of DNA methylation in the promoter region of PmWUS, which partially overlapped with the region of histone methylation. This suggests that the regulation of PmWUS involves both transcription factors and epigenetic modifications. Also, the gene expression of Japanese apricot LIKE HETEROCHROMATIN PROTEIN (PmLHP1), an epigenetic regulator, in MP was significantly lower than that in SP in S2 to 3, contrary to the trend in expression of PmWUS. Our results showed that PmAG recruited sufficient PmLHP1 to maintain the level of H3K27me3 on PmWUS during the S2 of pistil development. This recruitment of PmLHP1 by PmAG inhibits the expression of PmWUS at the precise time, leading to the formation of 1 normal pistil primordium.
Collapse
Affiliation(s)
- Ting Shi
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinxin Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yike Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shahid Iqbal
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA
| | - Wei Tan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojun Ni
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Salzler HR, Vandadi V, McMichael BD, Brown JC, Boerma SA, Leatham-Jensen MP, Adams KM, Meers MP, Simon JM, Duronio RJ, McKay DJ, Matera AG. Distinct roles for canonical and variant histone H3 lysine-36 in Polycomb silencing. SCIENCE ADVANCES 2023; 9:eadf2451. [PMID: 36857457 PMCID: PMC9977188 DOI: 10.1126/sciadv.adf2451] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/31/2023] [Indexed: 05/26/2023]
Abstract
Polycomb complexes regulate cell type-specific gene expression programs through heritable silencing of target genes. Trimethylation of histone H3 lysine 27 (H3K27me3) is essential for this process. Perturbation of H3K36 is thought to interfere with H3K27me3. We show that mutants of Drosophila replication-dependent (H3.2K36R) or replication-independent (H3.3K36R) histone H3 genes generally maintain Polycomb silencing and reach later stages of development. In contrast, combined (H3.3K36RH3.2K36R) mutants display widespread Hox gene misexpression and fail to develop past the first larval stage. Chromatin profiling revealed that the H3.2K36R mutation disrupts H3K27me3 levels broadly throughout silenced domains, whereas these regions are mostly unaffected in H3.3K36R animals. Analysis of H3.3 distributions showed that this histone is enriched at presumptive Polycomb response elements located outside of silenced domains but relatively depleted from those inside. We conclude that H3.2 and H3.3 K36 residues collaborate to repress Hox genes using different mechanisms.
Collapse
Affiliation(s)
- Harmony R. Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin D. McMichael
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - John C. Brown
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Sally A. Boerma
- Department of Biology, Carleton College, Northfield, MN, USA
| | - Mary P. Leatham-Jensen
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kirsten M. Adams
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Michael P. Meers
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Jeremy M. Simon
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Robert J. Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Daniel J. McKay
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|