1
|
Mieres-Castro D, Maldonado C, Mora-Poblete F. Enhancing prediction accuracy of foliar essential oil content, growth, and stem quality in Eucalyptus globulus using multi-trait deep learning models. FRONTIERS IN PLANT SCIENCE 2024; 15:1451784. [PMID: 39450087 PMCID: PMC11499176 DOI: 10.3389/fpls.2024.1451784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024]
Abstract
Eucalyptus globulus Labill., is a recognized multipurpose tree, which stands out not only for the valuable qualities of its wood but also for the medicinal applications of the essential oil extracted from its leaves. In this study, we implemented an integrated strategy comprising genomic and phenomic approaches to predict foliar essential oil content, stem quality, and growth-related traits within a 9-year-old breeding population of E. globulus. The strategy involved evaluating Uni/Multi-trait deep learning (DL) models by incorporating genomic data related to single nucleotide polymorphisms (SNPs) and haplotypes, as well as the phenomic data from leaf near-infrared (NIR) spectroscopy. Our results showed that essential oil content (oil yield) ranged from 0.01 to 1.69% v/fw and had no significant correlation with any growth-related traits. This suggests that selection solely based on growth-related traits did n The emphases (colored text) from revisions were removed throughout the article. Confirm that this change is fine. ot influence the essential oil content. Genomic heritability estimates ranged from 0.25 (diameter at breast height (DBH) and oil yield) to 0.71 (DBH and stem straightness (ST)), while pedigree-based heritability exhibited a broader range, from 0.05 to 0.88. Notably, oil yield was found to be moderate to highly heritable, with genomic values ranging from 0.25 to 0.60, alongside a pedigree-based estimate of 0.48. The DL prediction models consistently achieved higher prediction accuracy (PA) values with a Multi-trait approach for most traits analyzed, including oil yield (0.699), tree height (0.772), DBH (0.745), slenderness coefficient (0.616), stem volume (0.757), and ST (0.764). The Uni-trait approach achieved superior PA values solely for branching quality (0.861). NIR spectral absorbance was the best omics data for CNN or MLP models with a Multi-trait approach. These results highlight considerable genetic variation within the Eucalyptus progeny trial, particularly regarding oil production. Our results contribute significantly to understanding omics-assisted deep learning models as a breeding strategy to improve growth-related traits and optimize essential oil production in this species.
Collapse
Affiliation(s)
- Daniel Mieres-Castro
- Laboratory of Genomics and Forestry Biotechnology, Institute of Biological Sciences, University of Talca, Talca, Chile
| | - Carlos Maldonado
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Freddy Mora-Poblete
- Laboratory of Genomics and Forestry Biotechnology, Institute of Biological Sciences, University of Talca, Talca, Chile
| |
Collapse
|
2
|
The Necessity of Maintaining the Resilience of Peri-Urban Forests to Secure Environmental and Ecological Balance: A Case Study of Forest Stands Located on the Romanian Sector of the Pannonian Plain. DIVERSITY 2023. [DOI: 10.3390/d15030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Climate change’s negative effects, such as rising global temperatures and the disruption of global ecological ecosystems as a direct effect of rising carbon emissions in the atmosphere, are a significant concern for human health, communities, and ecosystems. The condition and presence of forest ecosystems, especially those in peri-urban areas, play an essential role in mitigating the negative effects of climate change on society. They provide direct benefits to the residents of large cities and their surrounding areas, and they must be managed sustainably to protect all their component ecosystems. This research was carried out in the forests of Lunca Muresului Natural Park and Bazos Arboretum, located in the Romanian sector of the Pannonian Plain, near urban agglomerations. The results showed high variability in the stands. Using the height-to-diameter ratio indicator concerning dbh and species, a strong Pearson correlation was registered (between 0.45 and 0.82). These values indicate the high stability of these stands, providing positive human–nature interactions such as recreational or outdoor activities (and a complementary yet indirect use value through attractive landscape views). Protecting these ecosystems offers a so-called insurance policy for the next generations from a climate change standpoint.
Collapse
|
3
|
Ghosh Dasgupta M, Abdul Bari MP, Shanmugavel S, Dharanishanthi V, Muthupandi M, Kumar N, Chauhan SS, Kalaivanan J, Mohan H, Krutovsky KV, Rajasugunasekar D. Targeted re-sequencing and genome-wide association analysis for wood property traits in breeding population of Eucalyptus tereticornis × E. grandis. Genomics 2021; 113:4276-4292. [PMID: 34785351 DOI: 10.1016/j.ygeno.2021.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/20/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
Globally, Eucalyptus plantations occupy 22 million ha area and is one of the preferred hardwood species due to their short rotation, rapid growth, adaptability and wood properties. In this study, we present results of GWAS in parents and 100 hybrids of Eucalyptus tereticornis × E. grandis using 762 genes presumably involved in wood formation. Comparative analysis between parents predicted 32,202 polymorphic SNPs with high average read depth of 269-562× per individual per nucleotide. Seventeen wood related traits were phenotyped across three diverse environments and GWAS was conducted using 13,610 SNPs. A total of 45 SNP-trait associations were predicted across two locations. Seven large effect markers were identified which explained more than 80% of phenotypic variation for fibre area. This study has provided an array of candidate genes which may govern fibre morphology in this genus and has predicted potential SNPs which can guide future breeding programs in tropical Eucalyptus.
Collapse
Affiliation(s)
| | | | | | | | - Muthusamy Muthupandi
- Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore 641002, India
| | - Naveen Kumar
- Institute of Wood Science and Technology, 18(th) Cross Malleshwaram, Bangalore 560 003, India
| | - Shakti Singh Chauhan
- Institute of Wood Science and Technology, 18(th) Cross Malleshwaram, Bangalore 560 003, India
| | | | - Haritha Mohan
- Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore 641002, India
| | - Konstantin V Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany; Center for Integrated Breeding Research, George-August University of Göttingen, 37075 Göttingen, Germany; Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia; Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; Department of Ecosystem Science and Management, Texas A&M University, College Station, TX 77843-2138, USA
| | | |
Collapse
|
4
|
Ahmar S, Ballesta P, Ali M, Mora-Poblete F. Achievements and Challenges of Genomics-Assisted Breeding in Forest Trees: From Marker-Assisted Selection to Genome Editing. Int J Mol Sci 2021; 22:10583. [PMID: 34638922 PMCID: PMC8508745 DOI: 10.3390/ijms221910583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Forest tree breeding efforts have focused mainly on improving traits of economic importance, selecting trees suited to new environments or generating trees that are more resilient to biotic and abiotic stressors. This review describes various methods of forest tree selection assisted by genomics and the main technological challenges and achievements in research at the genomic level. Due to the long rotation time of a forest plantation and the resulting long generation times necessary to complete a breeding cycle, the use of advanced techniques with traditional breeding have been necessary, allowing the use of more precise methods for determining the genetic architecture of traits of interest, such as genome-wide association studies (GWASs) and genomic selection (GS). In this sense, main factors that determine the accuracy of genomic prediction models are also addressed. In turn, the introduction of genome editing opens the door to new possibilities in forest trees and especially clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). It is a highly efficient and effective genome editing technique that has been used to effectively implement targetable changes at specific places in the genome of a forest tree. In this sense, forest trees still lack a transformation method and an inefficient number of genotypes for CRISPR/Cas9. This challenge could be addressed with the use of the newly developing technique GRF-GIF with speed breeding.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile;
| | - Paulina Ballesta
- The National Fund for Scientific and Technological Development, Av. del Agua 3895, Talca 3460000, Chile
| | - Mohsin Ali
- Department of Forestry and Range Management, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile;
| |
Collapse
|
5
|
Mora-Poblete F, Ballesta P, Lobos GA, Molina-Montenegro M, Gleadow R, Ahmar S, Jiménez-Aspee F. Genome-wide association study of cyanogenic glycosides, proline, sugars, and pigments in Eucalyptus cladocalyx after 18 consecutive dry summers. PHYSIOLOGIA PLANTARUM 2021; 172:1550-1569. [PMID: 33511661 DOI: 10.1111/ppl.13349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Natural variation of cyanogenic glycosides, soluble sugars, proline, and nondestructive optical sensing of pigments (chlorophyll, flavonols, and anthocyanins) was examined in ex situ natural populations of Eucalyptus cladocalyx F. Muell. grown under dry environmental conditions in the southern Atacama Desert, Chile. After 18 consecutive dry seasons, considerable plant-to-plant phenotypic variation for all the traits was observed in the field. For example, leaf hydrogen cyanide (HCN) concentrations varied from 0 (two acyanogenic individuals) to 1.54 mg cyanide g-1 DW. Subsequent genome-wide association study revealed associations with several genes with a known function in plants. HCN content was associated robustly with genes encoding Cytochrome P450 proteins, and with genes involved in the detoxification mechanism of HCN in cells (β-cyanoalanine synthase and cyanoalanine nitrilase). Another important finding was that sugars, proline, and pigment content were linked to genes involved in transport, biosynthesis, and/or catabolism. Estimates of genomic heritability (based on haplotypes) ranged between 0.46 and 0.84 (HCN and proline content, respectively). Proline and soluble sugars had the highest predictive ability of genomic prediction models (PA = 0.65 and PA = 0.71, respectively). PA values for HCN content and flavonols were relatively moderate, with estimates ranging from 0.44 to 0.50. These findings provide new understanding on the genetic architecture of cyanogenic capacity, and other key complex traits in cyanogenic E. cladocalyx.
Collapse
Affiliation(s)
| | - Paulina Ballesta
- Institute of Biological Sciences, Universidad de Talca, Talca, Chile
| | - Gustavo A Lobos
- Plant Breeding and Phenomic Center, Faculty of Agricultural Sciences, Universidad de Talca, Talca, Chile
| | - Marco Molina-Montenegro
- Institute of Biological Sciences, Universidad de Talca, Talca, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Roslyn Gleadow
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Sunny Ahmar
- Institute of Biological Sciences, Universidad de Talca, Talca, Chile
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Felipe Jiménez-Aspee
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| |
Collapse
|
6
|
Haplotype- and SNP-Based GWAS for Growth and Wood Quality Traits in Eucalyptus cladocalyx Trees under Arid Conditions. PLANTS 2021; 10:plants10010148. [PMID: 33450896 PMCID: PMC7828368 DOI: 10.3390/plants10010148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
The agricultural and forestry productivity of Mediterranean ecosystems is strongly threatened by the adverse effects of climate change, including an increase in severe droughts and changes in rainfall distribution. In the present study, we performed a genome-wide association study (GWAS) to identify single-nucleotide polymorphisms (SNPs) and haplotype blocks associated with the growth and wood quality of Eucalyptus cladocalyx, a tree species suitable for low-rainfall sites. The study was conducted in a progeny-provenance trial established in an arid site with Mediterranean patterns located in the southern Atacama Desert, Chile. A total of 87 SNPs and 3 haplotype blocks were significantly associated with the 6 traits under study (tree height, diameter at breast height, slenderness coefficient, first bifurcation height, stem straightness, and pilodyn penetration). In addition, 11 loci were identified as pleiotropic through Bayesian multivariate regression and were mainly associated with wood hardness, height, and diameter. In general, the GWAS revealed associations with genes related to primary metabolism and biosynthesis of cell wall components. Additionally, associations coinciding with stress response genes, such as GEM-related 5 and prohibitin-3, were detected. The findings of this study provide valuable information regarding genetic control of morphological traits related to adaptation to arid environments.
Collapse
|
7
|
Maldonado C, Mora-Poblete F, Contreras-Soto RI, Ahmar S, Chen JT, do Amaral Júnior AT, Scapim CA. Genome-Wide Prediction of Complex Traits in Two Outcrossing Plant Species Through Deep Learning and Bayesian Regularized Neural Network. FRONTIERS IN PLANT SCIENCE 2020; 11:593897. [PMID: 33329658 PMCID: PMC7728740 DOI: 10.3389/fpls.2020.593897] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/27/2020] [Indexed: 05/25/2023]
Abstract
Genomic selection models were investigated to predict several complex traits in breeding populations of Zea mays L. and Eucalyptus globulus Labill. For this, the following methods of Machine Learning (ML) were implemented: (i) Deep Learning (DL) and (ii) Bayesian Regularized Neural Network (BRNN) both in combination with different hyperparameters. These ML methods were also compared with Genomic Best Linear Unbiased Prediction (GBLUP) and different Bayesian regression models [Bayes A, Bayes B, Bayes Cπ, Bayesian Ridge Regression, Bayesian LASSO, and Reproducing Kernel Hilbert Space (RKHS)]. DL models, using Rectified Linear Units (as the activation function), had higher predictive ability values, which varied from 0.27 (pilodyn penetration of 6 years old eucalypt trees) to 0.78 (flowering-related traits of maize). Moreover, the larger mini-batch size (100%) had a significantly higher predictive ability for wood-related traits than the smaller mini-batch size (10%). On the other hand, in the BRNN method, the architectures of one and two layers that used only the pureline function showed better results of prediction, with values ranging from 0.21 (pilodyn penetration) to 0.71 (flowering traits). A significant increase in the prediction ability was observed for DL in comparison with other methods of genomic prediction (Bayesian alphabet models, GBLUP, RKHS, and BRNN). Another important finding was the usefulness of DL models (through an iterative algorithm) as an SNP detection strategy for genome-wide association studies. The results of this study confirm the importance of DL for genome-wide analyses and crop/tree improvement strategies, which holds promise for accelerating breeding progress.
Collapse
Affiliation(s)
- Carlos Maldonado
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O’ Higgins, San Fernando, Chile
| | | | - Rodrigo Iván Contreras-Soto
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O’ Higgins, San Fernando, Chile
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, Talca, Chile
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Antônio Teixeira do Amaral Júnior
- Laboratory de Melhoramento Genético Veget al., Universidade Estadual do Norte Fluminense Darcy Ribeiro/CCTA, Campos dos Goytacazes, Brazil
| | | |
Collapse
|
8
|
Ballesta P, Bush D, Silva FF, Mora F. Genomic Predictions Using Low-Density SNP Markers, Pedigree and GWAS Information: A Case Study with the Non-Model Species Eucalyptus cladocalyx. PLANTS (BASEL, SWITZERLAND) 2020; 9:E99. [PMID: 31941085 PMCID: PMC7020392 DOI: 10.3390/plants9010099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 11/16/2022]
Abstract
High-throughput genotyping techniques have enabled large-scale genomic analysis to precisely predict complex traits in many plant species. However, not all species can be well represented in commercial SNP (single nucleotide polymorphism) arrays. In this study, a high-density SNP array (60 K) developed for commercial Eucalyptus was used to genotype a breeding population of Eucalyptus cladocalyx, yielding only ~3.9 K informative SNPs. Traditional Bayesian genomic models were investigated to predict flowering, stem quality and growth traits by considering the following effects: (i) polygenic background and all informative markers (GS model) and (ii) polygenic background, QTL-genotype effects (determined by GWAS) and SNP markers that were not associated with any trait (GSq model). The estimates of pedigree-based heritability and genomic heritability varied from 0.08 to 0.34 and 0.002 to 0.5, respectively, whereas the predictive ability varied from 0.19 (GS) and 0.45 (GSq). The GSq approach outperformed GS models in terms of predictive ability when the proportion of the variance explained by the significant marker-trait associations was higher than those explained by the polygenic background and non-significant markers. This approach can be particularly useful for plant/tree species poorly represented in the high-density SNP arrays, developed for economically important species, or when high-density marker panels are not available.
Collapse
Affiliation(s)
- Paulina Ballesta
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile;
| | - David Bush
- CSIRO–Australian Tree Seed Centre, Acton 2601, Australia;
| | - Fabyano Fonseca Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil;
| | - Freddy Mora
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile;
| |
Collapse
|
9
|
Ballesta P, Maldonado C, Pérez-Rodríguez P, Mora F. SNP and Haplotype-Based Genomic Selection of Quantitative Traits in Eucalyptus globulus. PLANTS 2019; 8:plants8090331. [PMID: 31492041 PMCID: PMC6783840 DOI: 10.3390/plants8090331] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/02/2023]
Abstract
Eucalyptus globulus (Labill.) is one of the most important cultivated eucalypts in temperate and subtropical regions and has been successfully subjected to intensive breeding. In this study, Bayesian genomic models that include the effects of haplotype and single nucleotide polymorphisms (SNP) were assessed to predict quantitative traits related to wood quality and tree growth in a 6-year-old breeding population. To this end, the following markers were considered: (a) ~14 K SNP markers (SNP), (b) ~3 K haplotypes (HAP), and (c) haplotypes and SNPs that were not assigned to a haplotype (HAP-SNP). Predictive ability values (PA) were dependent on the genomic prediction models and markers. On average, Bayesian ridge regression (BRR) and Bayes C had the highest PA for the majority of traits. Notably, genomic models that included the haplotype effect (either HAP or HAP-SNP) significantly increased the PA of low-heritability traits. For instance, BRR based on HAP had the highest PA (0.58) for stem straightness. Consistently, the heritability estimates from genomic models were higher than the pedigree-based estimates for these traits. The results provide additional perspectives for the implementation of genomic selection in Eucalyptus breeding programs, which could be especially beneficial for improving traits with low heritability.
Collapse
Affiliation(s)
- Paulina Ballesta
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile.
| | - Carlos Maldonado
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile.
| | - Paulino Pérez-Rodríguez
- Colegio de Postgraduados, Statistics and Computer Sciences, Montecillos, Edo. de México 56230, Mexico.
| | - Freddy Mora
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile.
| |
Collapse
|