1
|
Gijón Mancheño A, Vuik V, van Wesenbeeck BK, Jonkman SN, van Hespen R, Moll JR, Kazi S, Urrutia I, van Ledden M. Integrating mangrove growth and failure in coastal flood protection designs. Sci Rep 2024; 14:7951. [PMID: 38575721 PMCID: PMC10995189 DOI: 10.1038/s41598-024-58705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/02/2024] [Indexed: 04/06/2024] Open
Abstract
Mangrove forests reduce wave attack along tropical and sub-tropical coastlines, decreasing the wave loads acting on coastal protection structures. Mangrove belts seaward of embankments can therefore lower their required height and decrease their slope protection thickness. Wave reduction by mangroves depends on tree frontal surface area and stability against storms, but both aspects are often oversimplified or neglected in coastal protection designs. Here we present a framework to evaluate how mangrove belts influence embankment designs, including mangrove growth over time and failure by overturning and trunk breakage. This methodology is applied to Sonneratia apetala mangroves seaward of embankments in Bangladesh, considering forest widths between 10 and 1000 m (cross-shore). For water depths of 5 m, wave reduction by mangrove forests narrower than 1 km mostly affects the slope protection and the bank erodibility, whereas the required embankment height is less influenced by mangroves. Sonneratia apetala trees experience a relative maximum in wave attenuation capacity at 10 years age, due to their large submerged canopy area. Once trees are more than 20 years old, their canopy is emergent, and most wave attenuation is caused by trunk and roots. Canopy emergence exposes mangroves to wind loads, which are much larger than wave loads, and can cause tree failure during cyclones. These results stress the importance of including tree surface area and stability models when predicting coastal protection by mangroves.
Collapse
Affiliation(s)
- A Gijón Mancheño
- Delft University of Technology, Stevinweg 1, Delft, 2628 CN, The Netherlands.
| | - V Vuik
- HKV Consultants, P.O. Box 2120, Lelystad, 8203 AC, The Netherlands
| | - B K van Wesenbeeck
- Department of Ecosystems and Sediment Dynamics, Deltares, P.O. Box 177, Delft, 2600 MH, The Netherlands
| | - S N Jonkman
- Delft University of Technology, Stevinweg 1, Delft, 2628 CN, The Netherlands
| | - R van Hespen
- Department of Estuarine and Delta Systems, WNIOZ Yerseke, Royal Netherlands Institute for Sea Research and Utrecht University, Utrecht, Netherlands
| | - J R Moll
- Delft University of Technology, Stevinweg 1, Delft, 2628 CN, The Netherlands
| | - S Kazi
- World Bank, 1818 H Street, Washington, DC, 20433, USA
| | - I Urrutia
- World Bank, 1818 H Street, Washington, DC, 20433, USA
| | - M van Ledden
- World Bank, 1818 H Street, Washington, DC, 20433, USA
| |
Collapse
|
2
|
Twomey A, Lovelock C. Global spatial dataset of mangrove genus distribution in seaward and riverine margins. Sci Data 2024; 11:306. [PMID: 38509068 PMCID: PMC10954639 DOI: 10.1038/s41597-024-03134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
Mangroves are nature-based solutions for coastal protection however their ability to attenuate waves and stabilise and accrete sediment varies with their species-specific architecture and frontal area. Hydrodynamic models are typically used to predict and assess the protection afforded by mangroves, but without species or genus distribution information, the results can be significantly different from reality. Data on the frontal genus of mangroves exposed to waves and tides can provide information that can be used in hydrodynamic models to more accurately forecast the protection benefit provided by mangroves. Globally, frontal species were identified from existing mangrove zonation diagrams to create a global mangrove genus distribution map. This dataset aims to improve the accuracy of hydrodynamic models. Data may be of interest to researchers in coastal engineering, marine science, wetland ecology and blue carbon.
Collapse
Affiliation(s)
- Alice Twomey
- School of the Environment, The University of Queensland, Brisbane, Queensland, 4067, Australia.
| | - Catherine Lovelock
- School of the Environment, The University of Queensland, Brisbane, Queensland, 4067, Australia
| |
Collapse
|
3
|
Génin F, Mazza PP, Pellen R, Rabineau M, Aslanian D, Masters JC. Co-evolution assists geographic dispersal: the case of Madagascar. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Interspecific associations may limit the dispersal of individual species, but may also facilitate it when entire co-evolved systems expand their geographic ranges. We tested the recent proposal that episodic land bridges linked Africa and Madagascar at three stages during the Cenozoic by comparing divergence estimates of Madagascar’s angiosperm taxa with their dispersal mechanisms. Plants that rely on gravity for seed dispersal indicate at least two episodes of land connection between Africa and Madagascar, in the Early Palaeocene and Early Oligocene. Seed dispersal by strepsirrhine primates possibly evolved in the Palaeocene, with the divergence of at least one endemic Malagasy angiosperm genus, Burasaia (Menispermaceae). This genus may have facilitated the lemur colonization of Madagascar. Frugivory, nectarivory and gummivory probably generalized in the Oligocene, with the co-evolution of modern lemurs and at least 10 new Malagasy angiosperm families. In the Late Miocene, more angiosperms were probably brought from Africa by birds via a discontinuous land connection, and radiated on Madagascar in diffuse association with birds (asities) and dwarf nocturnal lemurs (cheirogaleids). During the same connective episode, Madagascar was probably colonized by hippopotamuses, which both followed and re-seeded a variety of plants, forming the grassy Uapaca ‘tapia’ forest and ericoid ‘savoka’ thicket.
Collapse
Affiliation(s)
- Fabien Génin
- African Primate Initiative for Ecology and Speciation (APIES) and Africa Earth Observatory Network (AEON), Earth Stewardship Science Research Institute, Nelson Mandela University , Gqeberha (Port Elizabeth) , South Africa
| | - Paul Pa Mazza
- Department of Earth Sciences, University of Florence , via La Pira, Florence , Italy
| | - Romain Pellen
- African Primate Initiative for Ecology and Speciation (APIES) and Africa Earth Observatory Network (AEON), Earth Stewardship Science Research Institute, Nelson Mandela University , Gqeberha (Port Elizabeth) , South Africa
| | - Marina Rabineau
- CNRS, Institut Français de Recherche pour l’Exploration de la Mer (IFREMER ), UMR 6538 Geo-Ocean, IUEM, Univ Brest, Plouzané , France
| | - Daniel Aslanian
- CNRS, Institut Français de Recherche pour l’Exploration de la Mer (IFREMER ), UMR 6538 Geo-Ocean, IUEM, Univ Brest, Plouzané , France
| | - Judith C Masters
- African Primate Initiative for Ecology and Speciation (APIES) and Africa Earth Observatory Network (AEON), Earth Stewardship Science Research Institute, Nelson Mandela University , Gqeberha (Port Elizabeth) , South Africa
- Department of Botany & Zoology, Stellenbosch University , Stellenbosch , South Africa
| |
Collapse
|
4
|
Pranchai A, Jenke M, Pokavanich T, Puangchit L, Berger U. Aerial surveys reveal biotic drivers of mangrove expansion along a Thai salt flat ecotone. Restor Ecol 2022. [DOI: 10.1111/rec.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aor Pranchai
- Department of Silviculture, Faculty of Forestry Kasetsart University, Chatuchak Bangkok 10900 Thailand
- Special Research Unit for Mangrove Silviculture, Faculty of Forestry Kasetsart University Chatuchak Bangkok 10900 Thailand
| | - Michael Jenke
- Special Research Unit for Mangrove Silviculture, Faculty of Forestry Kasetsart University Chatuchak Bangkok 10900 Thailand
| | - Tanuspong Pokavanich
- Department of Marine Science, Faculty of Fisheries Kasetsart University Chatuchak Bangkok 10900 Thailand
| | - Ladawan Puangchit
- Department of Silviculture, Faculty of Forestry Kasetsart University, Chatuchak Bangkok 10900 Thailand
| | - Uta Berger
- Institute of Forest Growth and Forest Computer Sciences Technische Universität Dresden PO 1117, 01735 Tharandt Germany
| |
Collapse
|
5
|
Mai Z, Ye M, Wang Y, Foong SY, Wang L, Sun F, Cheng H. Characteristics of Microbial Community and Function With the Succession of Mangroves. Front Microbiol 2021; 12:764974. [PMID: 34950118 PMCID: PMC8689078 DOI: 10.3389/fmicb.2021.764974] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, 16S high-throughput and metagenomic sequencing analyses were employed to explore the changes in microbial community and function with the succession of mangroves (Sonneratia alba, Rhizophora apiculata, and Bruguiera parviflora) along the Merbok river estuary in Malaysia. The sediments of the three mangroves harbored their own unique dominant microbial taxa, whereas R. apiculata exhibited the highest microbial diversity. In general, Gammaproteobacteria, Actinobacteria, Alphaproteobacteria, Deltaproteobacteria, and Anaerolineae were the dominant microbial classes, but their abundances varied significantly among the three mangroves. Principal coordinates and redundancy analyses revealed that the specificity of the microbial community was highly correlated with mangrove populations and environmental factors. The results further showed that R. apiculata exhibited the highest carbon-related metabolism, coinciding with the highest organic carbon and microbial diversity. In addition, specific microbial taxa, such as Desulfobacterales and Rhizobiales, contributed the highest functional activities related to carbon metabolism, prokaryote carbon fixation, and methane metabolism. The present results provide a comprehensive understanding of the adaptations and functions of microbes in relation to environmental transition and mangrove succession in intertidal regions. High microbial diversity and carbon metabolism in R. apiculata might in turn facilitate and maintain the formation of climax mangroves in the middle region of the Merbok river estuary.
Collapse
Affiliation(s)
- Zhimao Mai
- State Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Mai Ye
- State Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Academy of Environmental Science, Guangzhou, China
| | - Youshao Wang
- State Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Swee Yeok Foong
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Lin Wang
- State Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Fulin Sun
- State Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
6
|
Differential Response of Macrobenthic Abundance and Community Composition to Mangrove Vegetation. FORESTS 2021. [DOI: 10.3390/f12101403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mass planting of mangroves has been proposed as a mitigation strategy to compensate for mangrove loss. However, the effects of mangrove vegetation on the abundance and community composition of macrobenthos remain controversial. The macrobenthic communities in four intact mangrove forests with different conditions and the adjacent nonvegetated mudflats of two mangrove species with distinct stand structures on the western coast of Taiwan were examined. Some macrobenthic taxa occurred only in the mangroves, suggesting macrobenthic critical habitats. Seasonal shift in community composition was more pronounced in the mudflats than in the mangroves, possibly due to the rich food supply, low temperature, and shelter function provided by mangrove forests. However, crab density was always lower in the mangroves than in the mudflats. There was a negative relationship between the stem density of Kandelia obovata (S., L.) and infaunal density. The pneumatophore density of Avicennia marina (Forsk.) correlated negatively with epifaunal density. Our results show that the response of macrobenthic abundance and community composition to mangrove vegetation was inconsistent. We reason that mangroves are critical habitats for the macrobenthos in the mudflats. However, if mangrove tree density is high, we predict that the macrobenthic density will decrease. This suggests that at some intermediate level of mangrove tree density, where there are enough mangrove trees to harbor a macrobenthic community but not enough trees to significantly reduce this density, mangroves management can be optimally achieved to promote the presence of a diverse and dense macrobenthic community.
Collapse
|
7
|
Zhang Y, Xin K, Sheng N, Xie Z, Liao B. The regenerative capacity of eight mangrove species based on propagule traits in Dongzhai Harbor, Hainan Province, China. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
Triest L, Van der Stocken T, Allela Akinyi A, Sierens T, Kairo J, Koedam N. Channel network structure determines genetic connectivity of landward-seaward Avicennia marina populations in a tropical bay. Ecol Evol 2020; 10:12059-12075. [PMID: 33209270 PMCID: PMC7663977 DOI: 10.1002/ece3.6829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022] Open
Abstract
Mangrove ecosystems along the East African coast are often characterized by a disjunct zonation pattern of seaward and landward Avicennia marina trees. This disjunct zonation may be maintained through different positions in the tidal frame, yielding different dispersal settings. The spatial configuration of the landscape and coastal processes such as tides and waves is expected to largely influence the extent of propagule transport and subsequent regeneration. We hypothesized that landward sites would keep a stronger genetic structure over short distances in comparison with enhanced gene flow among regularly flooded seaward fringes. We tested this hypothesis from densely vegetated A. marina transects of a well-documented mangrove system (Gazi Bay, Kenya) and estimated local gene flow and kinship-based fine-scale genetic structure. Ten polymorphic microsatellite markers in 457 A. marina trees revealed no overall significant difference in levels of allele or gene diversities between sites that differ in hydrological proximity. Genetic structure and connectivity of A. marina populations however indicated an overall effect of geographic distance and revealed a pronounced distinction between channels and topographic setting. Migration models allowed to infer gene flow directionality among channels, and indicated a bidirectional steppingstone between seaward and nearest located landward stands. Admixed gene pools without any fine-scale structure were found within the wider and more exposed Kidogoweni channel, suggesting open systems. Elevated kinship values and structure over 5 to 20 m distance were only detected in two distant landward and seaward transects near the mouth of the Mkurumuji River, indicating local retention and establishment. Overall, our findings show that patterns of A. marina connectivity are explained by hydrological proximity, channel network structure, and hydrokinetic energy, rather than just their positioning as disjunct landward or seaward zones.
Collapse
Affiliation(s)
- Ludwig Triest
- Research Group Plant Biology and Nature ManagementVrije Universiteit BrusselBrusselsBelgium
| | - Tom Van der Stocken
- Research Group Plant Biology and Nature ManagementVrije Universiteit BrusselBrusselsBelgium
| | - Abbie Allela Akinyi
- Research Group Plant Biology and Nature ManagementVrije Universiteit BrusselBrusselsBelgium
| | - Tim Sierens
- Research Group Plant Biology and Nature ManagementVrije Universiteit BrusselBrusselsBelgium
| | - James Kairo
- Department of Oceanography and HydrographyKenya Marine and Fisheries Research InstituteMombasaKenya
| | - Nico Koedam
- Research Group Plant Biology and Nature ManagementVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
9
|
Cheng H, Liu Y, Jiang ZY, Wang YS. Radial oxygen loss is correlated with nitrogen nutrition in mangroves. TREE PHYSIOLOGY 2020; 40:1548-1560. [PMID: 32705132 DOI: 10.1093/treephys/tpaa089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/12/2019] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
The present study aimed to explore the possible functions of radial oxygen loss (ROL) on mangrove nutrition. A field survey was conducted to explore the relations among ROL, root anatomy and leaf N in different mangrove species along a continuous tidal gradient. Three mangroves with different ROL (Avicennia marina [A. marina], Kandelia obovata and Rhizophora stylosa) were then selected to further explore the dynamics of N at the root-soil interface. The results showed that seaward pioneer mangrove species such as A. marina appeared to exhibit higher leaf N despite growing under poorer nutrient conditions. Greater leaf N in pioneer mangroves coincided with their special root structure (e.g., high porosity together with a thin lignified/suberized exodermis) and powerful ROL. An interesting positive relation was observed between ROL and leaf N in mangroves. Moreover, rhizo-box data further showed that soil nitrification was also strongly correlated with ROL. A. marina, which had the highest ROL among the three mangrove species studied, consistently possessed the highest levels of NO3-, nitrification and ammonia-oxidizing bacteria and archaea gene copies in the rhizosphere. Besides, both NO3- and NH4+ influxes were found to be higher in the roots of A. marina when compared to those of K. obovata and R. stylosa. In summary, greater N acquisition by pioneer mangroves such as A. marina was strongly correlated with ROL which would regulate N transformation and translocation at the root-soil interface. The implications of this study may be significant in mangrove nutrition and the mechanisms involved in mangrove zonation.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Tropical Oceanography and Daya Bay Marina Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164th Xingang West Road, Guangzhou 510301, China
| | - Yong Liu
- Ministry of Agriculture Key Laboratory of Mariculture Ecology and Products Quality and Safety, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231th Xingang West Road, Guangzhou 510300, China
| | - Zhao-Yu Jiang
- State Key Laboratory of Tropical Oceanography and Daya Bay Marina Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164th Xingang West Road, Guangzhou 510301, China
- College of Life Sciences, Linyi University, middle-region of Shuangling Road, Linyi 276000, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography and Daya Bay Marina Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164th Xingang West Road, Guangzhou 510301, China
| |
Collapse
|
10
|
Ten-Year Estimation of Net Primary Productivity in a Mangrove Forest under a Tropical Monsoon Climate in Eastern Thailand: Significance of the Temperature Environment in the Dry Season. FORESTS 2020. [DOI: 10.3390/f11090987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mangrove forests play crucial roles in the coastal ecosystems of the tropics. Few studies have addressed long-term changes in the net primary productivity (NPP) of mangroves in relation to the tropical monsoon climate. We conducted a tree census from 2008 to 2018 in a permanent plot at a secondary mangrove forest under the tropical monsoon climate of Eastern Thailand. During this period, the mortality of fast-growing species and the increasing number of newly recruited trees revealed a temporal change in the plant composition and distribution. Total tree biomass linearly increased from 283.64 to 381.72 t·ha−1 during the study period. The NPP was calculated by using the summation method, which included fine root production. The NPP ranged from 21.19 to 29.04 t·ha−1·yr−1. The fluctuation in NPP and its components were analyzed in relation to climatic factors by the linear regression model. The NPP did not relate with the annual climatic factors, such as the mean temperature and annual rainfall. However, both increments in the basal area and living tree biomass, which is a major component of NPP, were negatively related with the maximum and mean monthly temperatures in the dry season. The annual mortality rate related positively with annual rainfall and the maximum monthly temperature in the dry season. Linear regression analyses showed that some major components of NPP were chiefly affected by the temperature environment in the dry season. These results indicated that the weather in the dry season was largely restricting the mangrove NPP due to effects on the saline water dynamics of the soils under the tropical monsoon climate, which were revealed by our recent study. It implies that the hot-dry season may lead to high mortality, long-term reduction in the increment of living-trees biomass, and thus lowered the ability to maintain high NPP of mangrove forests over the long-term.
Collapse
|
11
|
Ma RF, Cheng H, Inyang A, Wang M, Wang YS. Distribution and risk of mercury in the sediments of mangroves along South China Coast. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:641-649. [PMID: 32562144 DOI: 10.1007/s10646-020-02238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
The importance of mangrove was widely reported. However, the potential risks of pollutants (e.g., Hg) accumulated in the mangroves are often ignored. Thus, the present study aimed to explore the distribution and risk of mercury (Hg) in the sediments of mangroves along South China Coast. Results showed that concentrations of total Hg ranged from 0.0815 to 0.6377 mg/kg, with an arithmetic mean value of 0.2503 mg/kg. The contamination index (Pi) showed mild pollution toxicity risks in NS, slight toxicity risks in DZG, QZ, SY, ND, GQ, TLG, and free pollutions in BMW, SJ, ZJK and BLHK. NS, DZG and SY scored the highest values of Igeo among the eleven mangrove regions studied, indicating moderate to heavy pollution inputs in these regions. As for the distribution of Hg in the sediments along tidal gradient, concentrations of Hg in the sediments sharply increased from seaward mudflat to landward mangrove, corresponding with the increases of TOC. In summary, the present data indicated that mangrove ecosystem is efficient in Hg reservoir. However, the potential ecological risks of Hg, especially in some mangrove regions easily affected by human activities, should be noted.
Collapse
Affiliation(s)
- Rui-Fei Ma
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
- Marine Biology Research Station at Daya Bay, Chinese Academy of Sciences, 518121, Shenzhen, China
- College of Geography and Tourism, Shaanxi Normal University, 710119, Xi'an, China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China.
| | - Aniefiok Inyang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | - Ming Wang
- School of Chemistry and Eco-Environmental Engineering, Guizhou Minzu University, 550025, GuiYang, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China.
- Marine Biology Research Station at Daya Bay, Chinese Academy of Sciences, 518121, Shenzhen, China.
| |
Collapse
|
12
|
Ma W, Wang W, Tang C, Chen G, Wang M. Zonation of mangrove flora and fauna in a subtropical estuarine wetland based on surface elevation. Ecol Evol 2020; 10:7404-7418. [PMID: 32760537 PMCID: PMC7391335 DOI: 10.1002/ece3.6467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 11/11/2022] Open
Abstract
In the context of sea-level rise (SLR), an understanding of the spatial distributions of mangrove flora and fauna is required for effective ecosystem management and conservation. These distributions are greatly affected by tidal inundation, and surface elevation is a reliable quantitative indicator of the effects of tidal inundation. Most recent studies have focused exclusively on the quantitative relationships between mangrove-plant zonation and surface elevation, neglecting mangrove fauna. Here, we measured surface elevation along six transects through the mangrove forests of a subtropical estuarine wetland in Zhenzhu Bay (Guangxi, China), using a real-time kinematic global positioning system. We identified the mangrove plants along each transect and investigated the spatial distributions of arboreal, epifaunal, and infaunal molluscs, as well as infaunal crabs, using traditional quadrats. Our results indicated that almost all mangrove forests in the bay were distributed within the 400-750 m intertidal zone, between the local mean sea level and mean high water (119 cm above mean sea level). Mangrove plants exhibited obvious zonation patterns, and different species tended to inhabit different niches along the elevation gradient: Aegiceras corniculatum dominated in seaward locations while Lumnitzera racemosa dominated in landward areas. Mangrove molluscs also showed distinct patterns of spatial zonation related to surface elevation, independent of life-form and season. The spatial distributions of some molluscs were correlated to the relative abundances of certain mangrove plants. In contrast, the spatial distributions of crabs were not related to surface elevation. To the best of our knowledge, this is the first study to explicitly quantify the influences of surface elevation on the spatial distributions of mangrove fauna. This characterization of the vertical ranges of various flora and fauna in mangrove forests provides a basic framework for future studies aimed at predicting changes in the structure and functions of mangrove forests in response to SLR.
Collapse
Affiliation(s)
- Wei Ma
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University) Ministry of EducationCollege of the Environment & EcologyXiamen UniversityXiamenChina
| | - Wenqing Wang
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University) Ministry of EducationCollege of the Environment & EcologyXiamen UniversityXiamenChina
| | - Chaoyi Tang
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University) Ministry of EducationCollege of the Environment & EcologyXiamen UniversityXiamenChina
| | - Guogui Chen
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University) Ministry of EducationCollege of the Environment & EcologyXiamen UniversityXiamenChina
| | - Mao Wang
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University) Ministry of EducationCollege of the Environment & EcologyXiamen UniversityXiamenChina
| |
Collapse
|
13
|
Effects of Salt on Root Aeration, Nitrification, and Nitrogen Uptake in Mangroves. FORESTS 2019. [DOI: 10.3390/f10121131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The potential effects of salt on the growth, root anatomy, radial oxygen loss (ROL), and nitrogen (N) dynamics in mangroves were investigated using the seedlings of Avicennia marina (Forsk.) Vierh. The results showed that a moderate salinity (200 mM NaCl) appeared to have little negative effect on the growth of A. marina. However, higher salt stresses (400 and 600 mM NaCl) significantly inhibited the biomass yield. Concentrations of N in the roots and leaves decreased sharply with increasing salinity. Nevertheless, the presence of salt directly altered root anatomy (e.g., reduced root porosity and promoted suberization within the exodermis and endodermis), leading to a significant reduction in ROL. The results further showed that reduced ROL induced by salt could restrain soil nitrification, resulting in less ammonia-oxidizing archaea and bacteria (AOA and AOB) gene copies and lower concentrations of NO3− in the soils. While increased root suberization induced by salt inhibited NH4+ and NO3− uptake and influx into the roots. In summary, this study indicated that inhibited root aeration may be a defense response to salt, however these root symptoms were not advantageous for rhizosphere nitrification and N uptake by A. marina.
Collapse
|
14
|
Gillis LG, Hortua DAS, Zimmer M, Jennerjahn TC, Herbeck LS. Interactive effects of temperature and nutrients on mangrove seedling growth and implications for establishment. MARINE ENVIRONMENTAL RESEARCH 2019; 151:104750. [PMID: 31253435 DOI: 10.1016/j.marenvres.2019.104750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
The establishment and wellbeing of seedlings governs the spread and survival of mangrove forests. Eutrophication and global warming are major challenges endangering mangrove ecosystem integrity. How these stressors affect seedling growth is not well understood. In a mesocosm experiment we grew mangrove seedlings in temperature-controlled chambers and investigated single and combined effects of temperature (23 and 33 °C), organic matter and dissolved nutrients on seedling trait morphology. Seedling survival was lowest in organic matter treatments. Combined effects of temperature and nutrients caused significant differences in root morphology with fewer but longer and thicker 3rd order roots, fewer 2nd and no 1st order roots in nutrient-enriched (23 °C) compared to non-enriched treatments (33 °C). Our results indicate these seedlings are less resilient to withstand their dynamic environment, in which they must settle and establish, due to lower root complexity. Mangrove ecosystems are negatively affected by global and local stresses; if new seedlings, which support forest recovery, are also affected then this amplifies stresses.
Collapse
Affiliation(s)
- Lucy Gwen Gillis
- Mangrove Ecology, Leibniz Centre for Tropical Marine Research, Fahrenheitstraße 6, 28359, Bremen, Germany.
| | - Daniel A S Hortua
- Mangrove Ecology, Leibniz Centre for Tropical Marine Research, Fahrenheitstraße 6, 28359, Bremen, Germany
| | - Martin Zimmer
- Mangrove Ecology, Leibniz Centre for Tropical Marine Research, Fahrenheitstraße 6, 28359, Bremen, Germany; University of Bremen, Faculty 02 Biology/Chemistry, Bremen, Germany
| | - Tim C Jennerjahn
- Ecological Biogeochemistry, Leibniz Centre for Tropical Marine Research, Fahrenheitstraße 6, 28359, Bremen, Germany
| | - Lucia S Herbeck
- Ecological Biogeochemistry, Leibniz Centre for Tropical Marine Research, Fahrenheitstraße 6, 28359, Bremen, Germany
| |
Collapse
|