1
|
Tasnim N, Hossain MR, Fayeem HAM, Mostofa ZB, Anika TT, Mou M, Modabber A, Zaddary AM, Gupta AD, Marma M, Imran MIH, Khan MMH, Datta A, Khatun R, Ahmed S, Sarker SK. Towards data-driven tropical forest restoration: Uncovering spatial variation, interactions and historical management effects on nutrients along soil depth gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176756. [PMID: 39378944 DOI: 10.1016/j.scitotenv.2024.176756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Data scarcity hinders global conservation initiatives, and there is a pressing demand for spatially detailed soil and species data to restore human-altered tropical forests. We, therefore, aimed to generate foundational soil environment and habitat suitability data and high-resolution soil maps to aid restoration efforts in a critical ecosystem of the threatened Indo-Burma Biodiversity Hotspot region, i.e., Tarap Hill Reserve (THR) in Bangladesh. Using multiple soil depths and vegetation data, we answered three major questions. (QI) How do spatial distribution and the relationships between soil physicochemical properties (i.e., pH, sand, silt, and clay percentages, organic carbon, and nutrients - N, P, K, Ca, Mg, Fe, and Zn) vary from surface to deeper soils (top 1 m)? (QII) How do different forest management interventions, i.e., old-growth forests (OGF), mixed plantations (MXP), and mono-specific plantations (MOP), influence soil properties, nutrients, and carbon in different soil depths? (QIII) Which spatial interpolation methods are best suited for making more accurate soil property predictions at different depths? Our analyses reveal decreasing availability of critical nutrients like N, P, Mg, and Fe from surface to subsurface soils, while pH, soil organic carbon, and clay content increased with depth. Several soil properties showed significant interactions, although the strength of the interactions changed from surface to deeper soils. Besides, forest management interventions significantly influenced soil functionality by having higher nutrient availability and soil organic carbon in OGF than MXP and MOP. Predictive performances of the deterministic and geostatistical interpolation methods varied for different soil properties in different soil depths, and soil maps revealed substantial heterogeneity in the distribution of soil properties across space and along depths. This study represents a pioneering step in data-driven tropical forest restoration, and our novel findings and high-resolution soil maps could guide future studies focusing on species habitat preferences, restoration ecology, and spatial conservation planning in the Indo-Burma Biodiversity Hotspot region and elsewhere in the tropics.
Collapse
Affiliation(s)
- Nazifa Tasnim
- Department of Forestry & Environmental Science, School of Agriculture and Mineral Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Md Rifat Hossain
- Department of Forestry & Environmental Science, School of Agriculture and Mineral Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - H A M Fayeem
- Department of Forestry & Environmental Science, School of Agriculture and Mineral Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh; Arannayk Foundation, 572/K, Wasi Tower, ECB Chattar, Matikata, 1206 Dhaka, Bangladesh
| | - Zawyad Bin Mostofa
- Department of Forestry & Environmental Science, School of Agriculture and Mineral Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh; Arannayk Foundation, 572/K, Wasi Tower, ECB Chattar, Matikata, 1206 Dhaka, Bangladesh
| | - Tabia Tasnim Anika
- Department of Forestry & Environmental Science, School of Agriculture and Mineral Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Mahzabin Mou
- Department of Forestry & Environmental Science, School of Agriculture and Mineral Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Ahmedi Modabber
- Department of Forestry & Environmental Science, School of Agriculture and Mineral Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Adel Mahmud Zaddary
- Department of Forestry & Environmental Science, School of Agriculture and Mineral Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Ankita Das Gupta
- Department of Forestry & Environmental Science, School of Agriculture and Mineral Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Mamaching Marma
- Department of Forestry & Environmental Science, School of Agriculture and Mineral Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Md Imam Hossain Imran
- Department of Forestry & Environmental Science, School of Agriculture and Mineral Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | | | - Anup Datta
- Department of Forestry & Environmental Science, School of Agriculture and Mineral Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Rahela Khatun
- Department of Forestry & Environmental Science, School of Agriculture and Mineral Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Shamim Ahmed
- Chair for Forest Growth and Yield Science, Department of Life Science System, School of Life Science, Technical University of Munich, Hans-Carl-Von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Swapan Kumar Sarker
- Department of Forestry & Environmental Science, School of Agriculture and Mineral Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh.
| |
Collapse
|
2
|
Wu Y, Wang H, Peng L, Zhao H, Zhang Q, Tao Q, Tang X, Huang R, Li B, Wang C. Root-soil-microbiome interaction in the rhizosphere of Masson pine (Pinus massoniana) under different levels of heavy metal pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116779. [PMID: 39083870 DOI: 10.1016/j.ecoenv.2024.116779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Heavy metal pollution of the soil affects the environment and human health. Masson pine is a good candidate for phytoremediation of heavy metal in mining areas. Microorganisms in the rhizosphere can help with the accumulation of heavy metal in host plants. However, studies on its rhizosphere bacterial communities under heavy metal pollution are still limited. Therefore, in this study, the chemical and bacterial characteristics of Masson pine rhizosphere under four different levels of heavy metal pollution were investigated using 16 S rRNA gene sequencing, soil chemistry and analysis of plant enzyme activities. The results showed that soil heavy metal content, plant oxidative stress and microbial diversity damage were lower the farther they were from the mine dump. The co-occurrence network relationship of slightly polluted soils (C1 and C2) was more complicated than that of highly polluted soils (C3 and C4). Relative abundance analysis indicated Sphingomonas and Pseudolabrys were more abundant in slightly polluted soils (C1 and C2), while Gaiella and Haliangium were more abundant in highly polluted soils (C3 and C4). LEfSe analysis indicated Burkholderiaceae, Xanthobacteraceae, Gemmatimonadaceae, Gaiellaceae were significantly enriched in C1 to C4 site, respectively. Mantel analysis showed that available cadmium (Cd) contents of soil was the most important factor influencing the bacterial community assembly. Correlation analysis showed that eight bacterial genus were significantly positively associated with soil available Cd content. To the best of our knowledge, this is the first study to investigate the rhizospheric bacterial community of Masson pine trees under different degrees of heavy metal contamination, which lays the foundation for beneficial bacteria-based phytoremediation using Masson pines in the future.
Collapse
Affiliation(s)
- Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Haidong Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Peng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Haiyang Zhao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiannian Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Guo X, Yang G, Wu J, Qiao S, Tao L. Impacts of forest age on soil characteristics and fertility quality of Populus simonii shelter forest at the southern edge of the Horqin Sandy Land, China. PeerJ 2024; 12:e17512. [PMID: 38832033 PMCID: PMC11146331 DOI: 10.7717/peerj.17512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
The sand fixing shelter forests in the Horqin Sandy Land are a key area in the "3-North" Shelter Forest Program in China, which has a history of over 50 years of artificial afforestation. Populus simonii Carr is one of the most dominant silvicultural species in the region. The aim of this study is to understand the soil characteristics and soil fertility of Populus simonii shelter forests at different growth stages and to establish a scientific basis for soil nutrient regulation and sustainable management of Populus simonii shelter forests at the southern edge of the Horqin Sandy Land. Sample plots were selected for young (≤15 a), middle-aged (16-25 a), near-mature (26-30 a), mature (31-40 a), and over-mature (≥41 a) forests. Each forest studied was in a state of natural restoration with uniform stand conditions and no artificial fertilizer was applied. These sites were selected to study changes in the soil characteristics in soil depths of 0-20, 20-40, and 40-60 cm. In order to avoid the problem of multicollinearity between soil variables and to reduce redundancy, principal component analysis (PCA), Pearson's correlation analysis, and Norm value calculation were used to select the least correlated indicators with the highest factor loadings. This was used to establish the minimum data set. The soil fertility quality of these shelterbelts in different forest ages was quantified using the soil quality index (SQI). In the growth stage from young to nearly mature forests, the soil bulk weight and pH decreased with increasing forest age. Soil capillary porosity, noncapillary porosity, total porosity, water content, field water holding capacity, and organic carbon content increased with increasing forest age and soil nutrient content gradually improved. At the stage of near-mature to over-mature forests, the effect of forest age on soil bulk density was not significant and all other soil characteristics decreased to varying degrees as the forest age increased. The soil also developed from alkaline to neutral. The SQI of the total data set and the SQI of the minimum data set consistently showed that near-mature forests (NMF) > middle-aged forests (MAF) > mature forests (MF) > over-mature forests (OMF) > young forests (YF). The results of the two evaluation systems showed a significant positive correlation (P < 0.05, R 2 = 0.8263) indicating that it is feasible to use the minimum data set to evaluate the soil fertility of shelter forests of different forest ages. The age of the forest has an obvious effect on the soil characteristics and overall soil fertility of shelter forests. The Populus simonii shelter forests on the southern edge of the Horqin Sandy Land have great soil development at the early stage of afforestation and the soil nutrient content gradually increases. The soil fertility reaches a peak when the forest is nearly mature and the soil fertility declines after the age of the forest reaches 30 years.
Collapse
Affiliation(s)
- Xinyu Guo
- College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Guang Yang
- College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ji Wu
- College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Shi Qiao
- College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Li Tao
- Forest General Site of Ordos City, Ordos, Inner Mongolia, China
| |
Collapse
|
4
|
Rahman M, Zhang K, Wang Y, Ahmad B, Ahmad A, Zhang Z, Khan D, Muhammad D, Ali A. Variations in soil physico-chemical properties, soil stocks, and soil stoichiometry under different soil layers, the major forest region Liupan Mountains of Northwest China. BRAZ J BIOL 2024; 84:e256565. [DOI: 10.1590/1519-6984.256565] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Abstract Liupan Mountains are an important region in China in the context of forest cover and vegetation due to huge afforestation and plantation practices, which brought changes in soil physio-chemical properties, soil stocks, and soil stoichiometries are rarely been understood. The study aims to explore the distribution of soil nutrients at 1-m soil depth in the plantation forest region. The soil samples at five depth increments (0-20, 20-40, 40-60, 60-80, and 80-100 cm) were collected and analyzed for different soil physio-chemical characteristics. The results showed a significant variation in soil bulk density (BD), soil porosity, pH, cation exchange capacity (CEC), and electric conductivity (EC) values. More soil BD (1.41 g cm-3) and pH (6.97) were noticed in the deep soil layer (80-100 cm), while the highest values of porosity (60.6%), EC (0.09 mS cm-1), and CEC (32.9 c mol kg-1) were reflected in the uppermost soil layer (0-20 cm). Similarly, the highest contents of soil organic carbon (SOC), total phosphorus (TP), available phosphorus (AP), total nitrogen (TN), and available potassium (AK) were calculated in the surface soil layer (0-20 cm). With increasing soil depth increment a decreasing trend in the SOC and other nutrient concentration were found, whereas the soil total potassium (TK) produced a negative correlation with soil layer depth. The entire results produced the distribution of SOCs and TNs (stocks) at various soil depths in forestland patterns were 0→20cm > 20→40cm > 40→60cm ≥ 60→80cm ≥ 80→100 cm. Furthermore, the stoichiometric ratios of C, N, and P, the C/P, and N/P ratios showed maximum values (66.49 and 5.46) in 0-20 cm and lowest values (23.78 and 1.91) in 80-100 cm soil layer depth. Though the C/N ratio was statistically similar across the whole soil profile (0-100 cm). These results highlighted that the soil depth increments might largely be attributed to fluctuations in soil physio-chemical properties, soil stocks, and soil stoichiometries. Further study is needed to draw more conclusions on nutrient dynamics, soil stocks, and soil stoichiometry in these forests.
Collapse
Affiliation(s)
- M. Rahman
- Beijing Forestry University, China; Chinese Academy of Forestry, China
| | - K. Zhang
- Beijing Forestry University, China
| | - Y. Wang
- Chinese Academy of Forestry, China
| | - B. Ahmad
- Beijing Forestry University, China; Chinese Academy of Forestry, China; University of Swat, Pakistan
| | - A. Ahmad
- Shaheed Benazir Bhutto University, Pakistan
| | - Z. Zhang
- Beijing Forestry University, China; Chinese Academy of Forestry, China
| | - D. Khan
- Beijing Forestry University, China
| | | | - A. Ali
- Karakoram International University, Pakistan
| |
Collapse
|
5
|
Shen Y, Lei L, Xiao W, Cheng R, Liu C, Liu X, Lin H, Zeng L. Soil microbial residue characteristics in Pinus massoniana lamb. Plantations. ENVIRONMENTAL RESEARCH 2023; 231:116081. [PMID: 37164286 DOI: 10.1016/j.envres.2023.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
A large amount of stable soil organic matter (SOM) is derived from microbial necromass, which can be assessed by quantifying amino sugar biomarkers. Pinus massoniana Lamb. Plantations are widely distributed in China and play a vital role in forest carbon sequestration. However, the patterns of soil microbial residue remain poorly understood. In this study, amino sugars were used to characterize patterns of soil microbial residues at three soil depths (0-10, 10-20, and 20-30 cm) in P. massoniana plantations of different ages (young, middle-aged, near-mature, mature, and over-mature; denoted as YG, MD, NM, MT, and OM, respectively). In the topsoil (0-10 cm), the total nitrogen (TN) content of the OM forest was the highest, whereas the soil organic carbon (SOC) content of the MT forest was the highest. Consistent with changes in SOC and TN, total microbial residue content decreased with increasing soil depth. However, the total microbial residues C to SOC contribution increased considerably with increasing depth, suggesting that more SOC was derived from microbial residues in the subsoil than that from the topsoil. The fungal residue C to SOC contribution was higher than that of bacterial residue C. Total amino sugar content in the topsoil increased with increasing age, and MT and OM had a significantly higher content than that of other forests. At all soil depths, SOC and TN content predominantly determined microbial necromass, whereas soil microbial biomass content predominantly determined microbial necromass in the topsoil; soil pH predominantly determined microbial necromass in the 10-20 cm soil layer; and soil pH and Ca2+ content were the primary factors in the soil layer below 20 cm. The study provides valuable insights into controls of microbial-derived organic C could be applied in Earth system studies for predicting SOC dynamics in forests.
Collapse
Affiliation(s)
- Yafei Shen
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry; Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing, 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Lei Lei
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry; Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing, 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Wenfa Xiao
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry; Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing, 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Ruimei Cheng
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry; Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing, 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Changfu Liu
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry; Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing, 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaoyu Liu
- Taizi Mountain Forest Management Bureau of Hubei Province, Jingmen, 431822, China
| | - Hu Lin
- Taizi Mountain Forest Management Bureau of Hubei Province, Jingmen, 431822, China
| | - Lixiong Zeng
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry; Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing, 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
6
|
Ebissa G, Fetene A, Desta H. Comparative analysis of managing plantation forests: The case of keeping plantation forests for carbon credit and industrial profits in Oromia Region, Ethiopia. Heliyon 2023; 9:e15151. [PMID: 37095960 PMCID: PMC10121802 DOI: 10.1016/j.heliyon.2023.e15151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Community-based organizations (CBOs) and individuals primarily engaged in forest management dedicated to carbon credit run both at national and regional levels. After a span of time elapsed in the same, CBOs and individuals aspired to shift the carbon-dedicated forest either into log or timber production based on an informed decision. However, there is no study done so which of these projects is financially more useful to them to make an informed decision. The objective of the study is, therefore, to make comparative analyses of plantation forests for carbon credit, round log and timber. The result has revealed that plantation forest managed for timber production is most attractive and rewarding in year 10 and year 15 both with and without discounting at 3%. Plantation forest managed for timber production enables the creation of a fixed asset than both carbon credit and log production. Plantation forests managed for the carbon credit, log production and timber production have externalities both positive and negative which must be considered while calculating the costs and benefits accrued thereof. There are existing and emerging risks associated with the carbon credit project which shifts from natural (forest) to technological abatement of climate change. The study is critical to understanding the benefits of future plantation forest investment. We, thus, conclude forest managed for timber production is financially more useful for CBOs and individuals than round log and carbon credit. We recommend CBOs and individuals to have adequate information on benefits and risks associated with plantation forests managed for carbon credit, round log and timber production before engaging in the investment.
Collapse
|
7
|
Ecological Stoichiometry in Pinus massoniana L. Plantation: Increasing Nutrient Limitation in a 48-Year Chronosequence. FORESTS 2022. [DOI: 10.3390/f13030469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) are considered indicators of nutrient status and ultimate ecosystem health. A detailed investigation of these elements in the leaves, branches, forest layer vegetation and soil, depending on stand age, was carried out. We investigated the effects of stand age (9-, 18-, 28-, and 48-year) on the aboveground plant parts (leaf, branch, herb, shrub, plant litter) and belowground pools (soil, roots) of P. massoniana plantations. The CNP stoichiometry of trees was affected by stand age. Mean N content in the aboveground parts in the nine-yr stand was greater than the other stands (18-, 28-, 48-yr), which decreased with increasing stand age. As stands aged, the nutrient demands of the plantations increased as well as their N:P ratios in soil. C content in the soil ranged from 30 to 105, the total N was 0.06 to 1.6, and the total P content ranged from 3.3–6.4 g kg−1. Soil C, N and P contents were greatly influenced by both stand age and soil depth, because surface soil sequester C and N more actively compared to deeper horizons, and more nutrients are released to the topsoil by the plant litter layer. Similarly, the ratios of other layers had a similar pattern as CNP because more nutrients were taken up by the plantations, decreasing nutrient supply in the deeper soil horizons. The green leaves N:P ratios (16) indicate limited growth of P. massoniana, as the range for global nutrient limitation for woody plants oscillated between 14–16, indicating N and P limitation. Young stands were observed to have greater P content and P resorption efficiency (56.9%–67.3%), with lower C:P and N:P ratios (704.4; 14.8). We conclude that with stand development, the nutrient demands of the plantations also increase, and soil N:P stoichiometry shows that these improve soil quality.
Collapse
|
8
|
Net Primary Productivity of Pinus massoniana Dependence on Climate, Soil and Forest Characteristics. FORESTS 2020. [DOI: 10.3390/f11040404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Understanding the spatial variation of forest productivity and its driving factors on a large regional scale can help reveal the response mechanism of tree growth to climate change, and is an important prerequisite for efficient forest management and studying regional and global carbon cycles. Pinus massoniana Lamb. is a major planted tree species in southern China, playing an important role in the development of forestry due to its high economic and ecological benefits. Here, we establish a biomass database for P. massoniana, including stems, branches, leaves, roots, aboveground organs and total tree, by collecting the published literature, to increase our understanding of net primary productivity (NPP) geographical trends for each tree component and their influencing factors across the entire geographical distribution of the species in southern China. P. massoniana NPP ranges from 1.04 to 13.13 Mg·ha−1·year−1, with a mean value of 5.65 Mg·ha−1·year−1. The NPP of both tree components (i.e., stem, branch, leaf, root, aboveground organs, and total tree) show no clear relationships with longitude and elevation, but an inverse relationship with latitude (p < 0.01). Linear mixed-effects models (LMMs) are employed to analyze the effect of environmental factors and stand characteristics on P. massoniana NPP. LMM results reveal that the NPP of different tree components have different sensitivities to environmental and stand variables. Appropriate temperature and soil nutrients (particularly soil available phosphorus) are beneficial to biomass accumulation of this species. It is worth noting that the high temperature in July and August (HTWM) is a significant climate stressor across the species geographical distribution and is not restricted to marginal populations in the low latitude area. Temperature was a key environmental factor behind the inverse latitudinal trends of P. massoniana NPP, because it showed a higher sensitivity than other factors. In the context of climate warming and nitrogen (N) deposition, the inhibition effect caused by high temperatures and the lack or imbalance of soil nutrients, particularly soil phosphorus, should be paid more attention in the future. These findings advance our understanding about the factors influencing the productivity of each P. massoniana tree component across the full geographical distribution of the species, and are therefore valuable for forecasting climate-induced variation in forest productivity.
Collapse
|
9
|
Carbon and Nitrogen Stocks in Three Types of Larix gmelinii Forests in Daxing’an Mountains, Northeast China. FORESTS 2020. [DOI: 10.3390/f11030305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Studying carbon and nitrogen stocks in different types of larch forest ecosystems is of great significance for assessing the carbon sink capacity and nitrogen level in larch forests. To evaluate the effects of the differences of forest type on the carbon and nitrogen stock capacity of the larch forest ecosystem, we selected three typical types of larch forest ecosystems in the northern part of Daxing’an Mountains, which were the Rhododendron simsii-Larix gmelinii forest (RL), Ledum palustre-Larix gmelinii forest (LL) and Sphagnum-Bryum-Ledum palustre-Larix gmelinii forest (SLL), to determine the carbon and nitrogen stocks in the vegetation (trees and understories), litter and soil. Results showed that there were significant differences in carbon and nitrogen stocks among the three types of larch forest ecosystems, showing a sequence of SLL (288.01 Mg·ha−1 and 25.19 Mg·ha−1) > LL (176.52 Mg·ha−1 and 14.85 Mg·ha−1) > RL (153.93 Mg·ha−1 and 10.00 Mg·ha−1) (P < 0.05). The largest proportions of carbon and nitrogen stocks were found in soils, accounting for 83.20%, 72.89% and 64.61% of carbon stocks and 98.61%, 97.58% and 96.00% of nitrogen stocks in the SLL, LL and RL, respectively. Also, it was found that significant differences among the three types of larch forest ecosystems in terms of soil carbon and nitrogen stocks (SLL > LL > RL) (P < 0.05) were the primary reasons for the differences in the ecosystem carbon and nitrogen stocks. More than 79% of soil carbon and 51% of soil nitrogen at a depth of 0–100 cm were stored in the upper 50 cm of the soil pool. In the vegetation layer, due to the similar tree biomass carbon and nitrogen stocks, there were no significant differences in carbon and nitrogen stocks among the three types of larch forest ecosystems. The litter carbon stock in the SLL was significantly higher than that in the LL and RL (P < 0.05), but no significant differences in nitrogen stock were found among them (P > 0.05). These findings suggest that different forest types with the same tree layer and different understory vegetation can greatly affect the carbon and nitrogen stock capacity of the forest ecosystem. This indicates that understory vegetation may have significant effects on the carbon and nitrogen stocks in soil and litter, which highlights the need to consider the effects of understory in future research into the carbon and nitrogen stock capacity of forest ecosystems.
Collapse
|
10
|
Response of understory vegetation, tree regeneration, and soil quality to manipulated stand density in a Pinus massoniana plantation. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00775] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|