1
|
Riit T, Cleary M, Adamson K, Blomquist M, Burokienė D, Marčiulynienė D, Oliva J, Poimala A, Redondo MA, Strømeng GM, Talgø V, Tedersoo L, Thomsen IM, Uimari A, Witzell J, Drenkhan R. Oomycete Soil Diversity Associated with Betula and Alnus in Forests and Urban Settings in the Nordic-Baltic Region. J Fungi (Basel) 2023; 9:926. [PMID: 37755034 PMCID: PMC10532727 DOI: 10.3390/jof9090926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
This study aimed to determine the differences and drivers of oomycete diversity and community composition in alder- and birch-dominated park and natural forest soils of the Fennoscandian and Baltic countries of Estonia, Finland, Lithuania, Norway, and Sweden. For this, we sequenced libraries of PCR products generated from the DNA of 111 soil samples collected across a climate gradient using oomycete-specific primers on a PacBio high-throughput sequencing platform. We found that oomycete communities are most affected by temperature seasonality, annual mean temperature, and mean temperature of the warmest quarter. Differences in composition were partly explained by the higher diversity of Saprolegniales in Sweden and Norway, as both total oomycete and Saprolegniales richness decreased significantly at higher longitudes, potentially indicating the preference of this group of oomycetes for a more temperate maritime climate. None of the evaluated climatic variables significantly affected the richness of Pythiales or Peronosporales. Interestingly, the relative abundance and richness of Pythiales was higher at urban sites compared to forest sites, whereas the opposite was true for Saprolegniales. Additionally, this is the first report of Phytophthora gallica and P. plurivora in Estonia. Our results indicate that the composition of oomycetes in soils is strongly influenced by climatic factors, and, therefore, changes in climate conditions associated with global warming may have the potential to significantly alter the distribution range of these microbes, which comprise many important pathogens of plants.
Collapse
Affiliation(s)
- Taavi Riit
- Institute of Forestry and Engineering, Estonian University of Life Sciences, F. R. Kreutzwaldi 5, 51006 Tartu, Estonia; (T.R.)
| | - Michelle Cleary
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
| | - Kalev Adamson
- Institute of Forestry and Engineering, Estonian University of Life Sciences, F. R. Kreutzwaldi 5, 51006 Tartu, Estonia; (T.R.)
| | - Mimmi Blomquist
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
| | - Daiva Burokienė
- Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Diana Marčiulynienė
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, LT-53101 Girionys, Lithuania
| | - Jonàs Oliva
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, 25198 Lleida, Spain
- Joint Research Unit CTFC–Agrotecnio, 25198 Lleida, Spain
| | - Anna Poimala
- Natural Resources Institute Finland (LUKE), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Miguel Angel Redondo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, 750 07 Uppsala, Sweden
| | - Gunn Mari Strømeng
- Norwegian Institute of Bioeconomy Research, NIBIO, Høgskoleveien 7, 1433 Ås, Norway
| | - Venche Talgø
- Norwegian Institute of Bioeconomy Research, NIBIO, Høgskoleveien 7, 1433 Ås, Norway
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Iben Margrete Thomsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Anne Uimari
- Natural Resources Institute Finland (LUKE), Juntintie 154, 77600 Suonenjoki, Finland
| | - Johanna Witzell
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
- Department of Forestry and Wood Technology, Linnaeus University, 351 95 Växjö, Sweden
| | - Rein Drenkhan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, F. R. Kreutzwaldi 5, 51006 Tartu, Estonia; (T.R.)
| |
Collapse
|
2
|
Burgess TI, White D, Sapsford SJ. Comparison of Primers for the Detection of Phytophthora (and Other Oomycetes) from Environmental Samples. J Fungi (Basel) 2022; 8:980. [PMID: 36135707 PMCID: PMC9502258 DOI: 10.3390/jof8090980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Many oomycetes are important plant pathogens that cause devastating diseases in agricultural fields, orchards, urban areas, and natural ecosystems. Limitations and difficulties associated with isolating these pathogens have led to a strong uptake of DNA metabarcoding and mass parallel sequencing. At least 21 primer combinations have been designed to amplify oomycetes, or more specifically, Phytophthora species, from environmental samples. We used the Illumina sequencing platform to compare 13 primer combinations on mock communities and environmental samples. The primer combinations tested varied significantly in their ability to amplify Phytophthora species in a mock community and from environmental samples; this was due to either low sensitivity (unable to detect species present in low concentrations) or a lack of specificity (an inability to amplify some species even if they were present in high concentrations). Primers designed for oomycetes underestimated the Phytophthora community compared to Phytophthora-specific primers. We recommend using technical replicates, primer combinations, internal controls, and a phylogenetic approach for assigning a species identity to OTUs or ASVs. Particular care must be taken if sampling substrates where hybrid species could be expected. Overall, the choice of primers should depend upon the hypothesis being tested.
Collapse
Affiliation(s)
- Treena I. Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch 6150, Australia
| | - Diane White
- Phytophthora Science and Management, Harry Butler Institute, Murdoch 6150, Australia
| | - Sarah J. Sapsford
- Phytophthora Science and Management, Harry Butler Institute, Murdoch 6150, Australia
- School of Biological Science, University of Canterbury, Christchurch 8401, New Zealand
| |
Collapse
|
3
|
New Reports of Phytophthora Species in Plant Nurseries in Spain. Pathogens 2022; 11:pathogens11080826. [PMID: 35894049 PMCID: PMC9394253 DOI: 10.3390/pathogens11080826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The plant nursery industry has become an ideal reservoir for Phytophthora species and other soilborne pathogens. In this context, isolation from tissues and soil of ornamental and forest plants from nurseries in four regions of Spain was carried out. A high diversity of Phytophthora species was confirmed. Fourteen Phytophthora phylotypes (P. cactorum, P. cambivora, P. cinnamomi, P. citrophthora, P. crassamura, P. gonapodyides, P. hedraiandra, P. nicotianae, P. niederhauserii, P. palmivora, P. plurivora, P. pseudocryptogea, P. sansomeana, and Phytophthora sp. tropicalis-like 2) were isolated from over 500 plant samples of 22 species in 19 plant genera. Nine species were detected in water sources, two of them (P. bilorbang and P. lacustris) exclusively from water samples. P. crassamura was detected for the first time in Spain. This is the first time P. pseudocryptogea is isolated from Chamaecyparis lawsoniana and Yucca rostrata in Spain.
Collapse
|
4
|
New-Generation Sequencing Technology in Diagnosis of Fungal Plant Pathogens: A Dream Comes True? J Fungi (Basel) 2022; 8:jof8070737. [PMID: 35887492 PMCID: PMC9320658 DOI: 10.3390/jof8070737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
The fast and continued progress of high-throughput sequencing (HTS) and the drastic reduction of its costs have boosted new and unpredictable developments in the field of plant pathology. The cost of whole-genome sequencing, which, until few years ago, was prohibitive for many projects, is now so affordable that a new branch, phylogenomics, is being developed. Fungal taxonomy is being deeply influenced by genome comparison, too. It is now easier to discover new genes as potential targets for an accurate diagnosis of new or emerging pathogens, notably those of quarantine concern. Similarly, with the development of metabarcoding and metagenomics techniques, it is now possible to unravel complex diseases or answer crucial questions, such as "What's in my soil?", to a good approximation, including fungi, bacteria, nematodes, etc. The new technologies allow to redraw the approach for disease control strategies considering the pathogens within their environment and deciphering the complex interactions between microorganisms and the cultivated crops. This kind of analysis usually generates big data that need sophisticated bioinformatic tools (machine learning, artificial intelligence) for their management. Herein, examples of the use of new technologies for research in fungal diversity and diagnosis of some fungal pathogens are reported.
Collapse
|
5
|
Moon JH, Won SJ, Maung CEH, Choi JH, Choi SI, Ajuna HB, Ahn YS. Bacillus velezensis CE 100 Inhibits Root Rot Diseases ( Phytophthora spp.) and Promotes Growth of Japanese Cypress ( Chamaecyparis obtusa Endlicher) Seedlings. Microorganisms 2021; 9:microorganisms9040821. [PMID: 33924463 PMCID: PMC8069221 DOI: 10.3390/microorganisms9040821] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 12/18/2022] Open
Abstract
Root rot diseases, caused by phytopathogenic oomycetes, Phytophthora spp. cause devastating losses involving forest seedlings, such as Japanese cypress (Chamaecyparis obtusa Endlicher) in Korea. Plant growth-promoting rhizobacteria (PGPR) are a promising strategy to control root rot diseases and promote growth in seedlings. In this study, the potential of Bacillus velezensis CE 100 in controlling Phytophthora root rot diseases and promoting the growth of C. obtusa seedlings was investigated. B. velezensis CE 100 produced β-1,3-glucanase and protease enzymes, which degrade the β-glucan and protein components of phytopathogenic oomycetes cell-wall, causing mycelial growth inhibition of P. boehmeriae, P. cinnamomi, P. drechsleri and P. erythoroseptica by 54.6%, 62.6%, 74.3%, and 73.7%, respectively. The inhibited phytopathogens showed abnormal growth characterized by swelling and deformation of hyphae. B. velezensis CE 100 increased the survival rate of C. obtusa seedlings 2.0-fold and 1.7-fold compared to control, and fertilizer treatment, respectively. Moreover, B. velezensis CE 100 produced indole-3-acetic acid (IAA) up to 183.7 mg/L, resulting in a significant increase in the growth of C. obtusa seedlings compared to control, or chemical fertilizer treatment, respectively. Therefore, this study demonstrates that B. velezensis CE 100 could simultaneously control Phytophthora root rot diseases and enhance growth of C. obtusa seedlings.
Collapse
Affiliation(s)
- Jae-Hyun Moon
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-H.M.); (S.-J.W.); (J.-H.C.); (S.-I.C.); (H.B.A.)
| | - Sang-Jae Won
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-H.M.); (S.-J.W.); (J.-H.C.); (S.-I.C.); (H.B.A.)
| | - Chaw Ei Htwe Maung
- Division of Agricultural and Biological Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea;
| | - Jae-Hyeok Choi
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-H.M.); (S.-J.W.); (J.-H.C.); (S.-I.C.); (H.B.A.)
| | - Su-In Choi
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-H.M.); (S.-J.W.); (J.-H.C.); (S.-I.C.); (H.B.A.)
| | - Henry B. Ajuna
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-H.M.); (S.-J.W.); (J.-H.C.); (S.-I.C.); (H.B.A.)
| | - Young Sang Ahn
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (J.-H.M.); (S.-J.W.); (J.-H.C.); (S.-I.C.); (H.B.A.)
- Correspondence: ; Tel.: +82-62-530-2081; Fax: +82-62-530-2089
| |
Collapse
|
6
|
Transgenerational Induction of Resistance to Phytophthora cinnamomi in Holm Oak. FORESTS 2021. [DOI: 10.3390/f12010100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The maternal environment of a tree species can influence the development and resistance of its offspring. Transgenerational induction of resistance is well known in plants but its occurrence in forest tree species has been less reported. Quercus ilex L. (holm oak) is a widespread Mediterranean tree species threatened by the invasive Phytophthora cinnamomi Rands pathogen. The influence of P. cinnamomi on the offspring of infected Q. ilex mother trees has not been studied. This study compared the performance and tolerance to P. cinnamomi of seedlings from non-infected and P. cinnamomi-infected trees. Acorns from Q. ilex trees were collected from five forests. After isolations were conducted in the rhizosphere of several trees, in each forest, three trees were selected as non-infected and three were selected as P. cinnamomi-infected. Forty acorns per tree were weighed and sown under greenhouse conditions, and when plants were aged ~9 months they were challenged with P. cinnamomi. Plant mortality was higher in the offspring of non-infected trees than in the offspring of P. cinnamomi-infected trees (26.2% vs. 21.1%, respectively). Consistently, survival probabilities of seedlings from P. cinnamomi-infected trees were higher than those of seedlings from non-infected trees, particularly in seedlings with reduced growth. Although acorns from healthy Q. ilex trees were heavier than acorns from P. cinnamomi-infected trees, the time to death of inoculated seedlings was not influenced by seed weight. The time to death of seedlings was positively related to belowground mass, particularly to an increased proportion of fine secondary roots. We report transgenerational-induced resistance to P. cinnamomi in Q. ilex triggered by an unknown mechanism independent of acorn mass. Information about the persistence of transgenerational effects in Q. ilex offspring and the influence of these effects on plant fitness is crucial to improve the management and regeneration of this declining species.
Collapse
|
7
|
Piombo E, Abdelfattah A, Droby S, Wisniewski M, Spadaro D, Schena L. Metagenomics Approaches for the Detection and Surveillance of Emerging and Recurrent Plant Pathogens. Microorganisms 2021; 9:188. [PMID: 33467169 PMCID: PMC7830299 DOI: 10.3390/microorganisms9010188] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/28/2022] Open
Abstract
Globalization has a dramatic effect on the trade and movement of seeds, fruits and vegetables, with a corresponding increase in economic losses caused by the introduction of transboundary plant pathogens. Current diagnostic techniques provide a useful and precise tool to enact surveillance protocols regarding specific organisms, but this approach is strictly targeted, while metabarcoding and shotgun metagenomics could be used to simultaneously detect all known pathogens and potentially new ones. This review aims to present the current status of high-throughput sequencing (HTS) diagnostics of fungal and bacterial plant pathogens, discuss the challenges that need to be addressed, and provide direction for the development of methods for the detection of a restricted number of related taxa (specific surveillance) or all of the microorganisms present in a sample (general surveillance). HTS techniques, particularly metabarcoding, could be useful for the surveillance of soilborne, seedborne and airborne pathogens, as well as for identifying new pathogens and determining the origin of outbreaks. Metabarcoding and shotgun metagenomics still suffer from low precision, but this issue can be limited by carefully choosing primers and bioinformatic algorithms. Advances in bioinformatics will greatly accelerate the use of metagenomics to address critical aspects related to the detection and surveillance of plant pathogens in plant material and foodstuffs.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, 10095 Grugliasco, Italy;
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, 75007 Uppsala, Sweden
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria;
- Department of Ecology, Environment and Plant Sciences, University of Stockholm, Svante Arrhenius väg 20A, Stockholm 11418, Sweden
| | - Samir Droby
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion 7505101, Israel;
| | - Michael Wisniewski
- U.S. Department of Agriculture—Agricultural Research Service (USDA-ARS), Kearneysville, WV 25430, USA;
- Department of Biological Sciences, Virginia Technical University, Blacksburg, VA 24061, USA
| | - Davide Spadaro
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, 10095 Grugliasco, Italy;
- AGROINNOVA—Centre of Competence for the Innovation in the Agroenvironmental Sector, University of Torino, 10095 Grugliasco, Italy
| | - Leonardo Schena
- Department of Agriculture, Università Mediterranea, 89122 Reggio Calabria, Italy;
| |
Collapse
|
8
|
An Overview of Phytophthora Species Inhabiting Declining Quercus suber Stands in Sardinia (Italy). FORESTS 2020. [DOI: 10.3390/f11090971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cork oak forests are of immense importance in terms of economic, cultural, and ecological value in the Mediterranean regions. Since the beginning of the 20th century, these forests ecosystems have been threatened by several factors, including human intervention, climate change, wildfires, pathogens, and pests. Several studies have demonstrated the primary role of the oomycete Phytophthora cinnamomi Ronds in the widespread decline of cork oaks in Portugal, Spain, southern France, and Italy, although other congeneric species have also been occasionally associated. Between 2015 and 2019, independent surveys were undertaken to determine the diversity of Phytophthora species in declining cork oak stands in Sardinia (Italy). Rhizosphere soil samples were collected from 39 declining cork oak stands and baited in the laboratory with oak leaflets. In addition, the occurrence of Phytophthora was assayed using an in-situ baiting technique in rivers and streams located throughout ten of the surveyed oak stands. Isolates were identified by means of both morphological characters and sequence analysis of internal transcribed spacer (ITS) regions of ribosomal DNA. In total, 14 different Phytophthora species were detected. Phytophthora cinnamomi was the most frequently isolated species from rhizosphere soil, followed by P. quercina, P. pseudocryptogea, and P. tyrrhenica. In contrast, P. gonapodyides turned out to be the most dominant species in stream water, followed by P. bilorbang, P. pseudocryptogea, P. lacustris, and P. plurivora. Pathogenicity of the most common Phytophthora species detected was tested using both soil infestation and log inoculation methods. This study showed the high diversity of Phytophthora species inhabiting soil and watercourses, including several previously unrecorded species potentially involved in the decline of cork oak forests.
Collapse
|
9
|
Diversity of Phytophthora Communities across Different Types of Mediterranean Vegetation in a Nature Reserve Area. FORESTS 2020. [DOI: 10.3390/f11080853] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research Highlights: Protected natural areas are a reservoir of Phytophthora species and represent the most suitable sites to study their ecology, being less disturbed by human activities than other environments. Background and Objectives: The specific objective of this study was to correlate the diversity and distribution of Phytophthora species with the vegetation in aquatic, riparian and terrestrial habitats within a protected area in Eastern Sicily, Southern Italy. Materials and Methods: Environmental samples (water and soil) were sourced from two streams running through the reserve and six different types of vegetation, including Platano-Salicetum pedicellatae, the Sarcopoterium spinosum community, Myrto communis-Pistacietum lentisci, Pistacio-Quercetum ilicis,Oleo-Quercetum virgilianae and a gallery forest dominated by Nerium oleander (Natura 2000 classification of habitats). Phytophthora species were recovered from samples using leaf baiting and were classified on the basis of morphological characteristics and sequencing of internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA). Results: As many as 11 Phytophthora species, within five different ITS clades, were identified, including P. asparagi, P. bilorbang, P. cryptogea, P. gonapodyides, P. lacustris, P. multivora, P. nicotianae, P. oleae, P. parvispora, P. plurivora and P. syringae. No Phytophthora species were found in the Sarcopoterium spinosum comm. Phytophthora asparagi, P. lacustris and P. plurivora were the prevalent species in the other five plant communities, but only P. plurivora was present in all of them. Overall aquatic species from clade 6 (100 out of 228 isolates) were the most common; they were recovered from all five types of vegetation, streams and riparian habitats. Phytophthora populations found in the Platano-Salicetum pedicellatae and Oleo-Quercetum virgilianae show the highest diversity, while no correlation was found with the physicochemical characteristics of the soil. Conclusions: The vegetation type and the aquatic or terrestrial habitat were identified as major environmental factors correlated with the diversity of Phytophthora communities in this reserve.
Collapse
|
10
|
Legeay J, Husson C, Boudier B, Louisanna E, Baraloto C, Schimann H, Marcais B, Buée M. Surprising low diversity of the plant pathogen Phytophthora in Amazonian forests. Environ Microbiol 2020; 22:5019-5032. [PMID: 32452108 DOI: 10.1111/1462-2920.15099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/23/2020] [Indexed: 11/30/2022]
Abstract
The genus Phytophthora represents a group of plant pathogens with broad global distribution. The majority of them cause the collar and root-rot of diverse plant species. Little is known about Phytophthora communities in forest ecosystems, especially in the Neotropical forests where natural enemies could maintain the huge plant diversity via negative density dependence. We characterized the diversity of soil-borne Phytophthora communities in the North French Guiana rainforest and investigated how they are structured by host identity and environmental factors. In this little-explored habitat, 250 soil cores were sampled from 10 plots hosting 10 different plant families across three forest environments (Terra Firme, Seasonally Flooded and White Sand). Phytophthora diversity was studied using a baiting approach and metabarcoding (High-Throughput Sequencing) on environmental DNA extracted from both soil samples and baiting-leaves. These three approaches revealed very similar communities, characterized by an unexpected low diversity of Phytophthora species, with the dominance of two cryptic species close to Phytophthora heveae. As expected, the Phytophthora community composition of the French Guiana rainforest was significantly impacted by the host plant family and environment. However, these plant pathogen communities are very small and are dominated by generalist species, questioning their potential roles as drivers of plant diversity in these Amazonian forests.
Collapse
Affiliation(s)
- Jean Legeay
- Université de Lorraine, INRAE, UMR IAM - Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Claude Husson
- Université de Lorraine, INRAE, UMR IAM - Interactions Arbres-Microorganismes, Nancy, F-54000, France.,Département de la santé des forêts, Ministère de l'agriculture et de l'alimentation, DGAL, SDQPV, Paris, 75015, France
| | - Benjamin Boudier
- Université de Lorraine, INRAE, UMR IAM - Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Eliane Louisanna
- INRAE, UMR EcoFoG - Ecology of Guiana Forests - (AgroParisTech, CNRS, CIRAD, Université des Antilles, Université de Guyane), Kourou, 97310, France
| | - Christopher Baraloto
- INRAE, UMR EcoFoG - Ecology of Guiana Forests - (AgroParisTech, CNRS, CIRAD, Université des Antilles, Université de Guyane), Kourou, 97310, France.,International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Heidy Schimann
- INRAE, UMR EcoFoG - Ecology of Guiana Forests - (AgroParisTech, CNRS, CIRAD, Université des Antilles, Université de Guyane), Kourou, 97310, France
| | - Benoît Marcais
- Université de Lorraine, INRAE, UMR IAM - Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Marc Buée
- Université de Lorraine, INRAE, UMR IAM - Interactions Arbres-Microorganismes, Nancy, F-54000, France
| |
Collapse
|
11
|
Santilli E, Riolo M, La Spada F, Pane A, Cacciola SO. First Report of Root Rot Caused by Phytophthora bilorbang on Olea europaea in Italy. PLANTS (BASEL, SWITZERLAND) 2020; 9:E826. [PMID: 32630077 PMCID: PMC7411771 DOI: 10.3390/plants9070826] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/27/2020] [Accepted: 06/27/2020] [Indexed: 11/22/2022]
Abstract
Leaf chlorosis, severe defoliation and wilt associated with root rot were observed on mature olive trees cv. Nera di Gonnos in an experimental orchard at Mirto Crosia (Calabria, southern Italy). An oomycete was consistently isolated from rotten roots of symptomatic olive trees. It was identified as Phytophthora bilorbang by morphological characters and sequencing of Internal Transcribed Spacer (ITS) regions of ribosomal DNA (rDNA). Pathogenicity was verified by inoculating potted two-month-old rooted cuttings of Olea europaea var. Nera di Gonnos in a soil infestation trial. P. bilorbang was re-isolated from roots of symptomatic, artificially inoculated olive cuttings to fulfill Koch's postulates. This is the first report of P. bilorbang on O. europaea L. and on a species of the Oleaceae family worldwide.
Collapse
Affiliation(s)
- Elena Santilli
- Council for Agricultural Research and Agricultural Economy Analysis, Research Centre for Olive, Citrus and Tree Fruit-Rende CS (CREA-OFA), 87036 Rende, Italy
| | - Mario Riolo
- Council for Agricultural Research and Agricultural Economy Analysis, Research Centre for Olive, Citrus and Tree Fruit-Rende CS (CREA-OFA), 87036 Rende, Italy
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
- Department of Agricultural Science, Mediterranean University of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Federico La Spada
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Antonella Pane
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| |
Collapse
|