1
|
Chen S, Li J, Sun J, Zhong Q, Hu D, Cheng D. "Diminishing returns" and leaf area-biomass scaling of ferns in subtropical ecosystems. FRONTIERS IN PLANT SCIENCE 2023; 14:1187704. [PMID: 37441171 PMCID: PMC10333482 DOI: 10.3389/fpls.2023.1187704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023]
Abstract
Foliage leaves are the primary photosynthetic organ of the majority of vascular plants, and their area vs. biomass scaling relationships provide valuable insights into the capacity and investment in light interception, which is critical to plant growth and performance. The "diminishing returns" hypothesis (DRH), which is based primarily on data from gymnosperms and angiosperms, posits that leaf (lamina) area scales with leaf dry mass. on average with a scaling exponent less than 1.0. However, it remains uncertain whether DRH applies to ferns or whether ecological factors affect the scaling exponents governing fern leaf morphometrics. To address this issue, 182 individuals of 28 subtropical ferns species were studied at low, medium, and high elevations (i.e., 600 m, 900 m, and 1200 m, respectively) in Mount Wuyi National Park, Jiangxi Province, China. The scaling relationships between leaf area and leaf biomass for individual and total leaf of ferns at different elevations were examined by using standardized major axis regression protocols. Analyses of the 28 fern species (using Blomberg K-value protocols) indicated no phylogenetic biases among the species compositions of the three different elevations. In addition, at the individual plant level, individual leaf area (ILA) did not differ significantly among the three different elevations (P > 0.05). However, individual leaf mass (ILM) was significantly higher at 900m than at 1200m (P < 0.05), resulting in a significantly higher leaf mass per area (LMA) at the 900m elevation than at the 600m and 1200m elevations (P < 0.05). The ILA and ILM at the 900m elevation were significantly higher than at the 600m elevation (P < 0.05). At the species level, ILA and ILM did not differ significantly among the three elevations (P > 0.05). The total leaf area per individual (TLA) did not differ significantly across the different elevations (P > 0.05). However, total leaf mass per individual (TLM) did differ significantly (P < 0.05). At the individual plant level, the scaling exponents for ILA vs. ILM and TLA vs. TLM at the three different elevations were all significantly less than 1.0 (P < 0.05), which was consistent with the DRH. At the species level, the scaling exponents for the ILA vs. ILM were significantly less than 1.0 at the middle and high elevations, but not at the low elevation. The scaling exponents of the TLA and TLM were numerically highest in the middle elevation, and all were less than 1.0 for the three elevations. These results indicate that the scaling relationships of leaf area versus mass of subtropical ferns at different elevations support the DRH hypothesis. The study further informs our understanding of the resource allocation strategies of an ancient and diverse plant lineage.
Collapse
Affiliation(s)
- Shubing Chen
- College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, China
| | - Jinlong Li
- College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, China
| | - Jun Sun
- School of Resources and Environment, Anqing Normal University, Anqing, China
| | - Quanlin Zhong
- College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, China
| | - Dandan Hu
- College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, China
| | - Dongliang Cheng
- College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, China
| |
Collapse
|
2
|
Fang D, Xian J, Chen G, Zhang Y, Qin H, Fu X, Lin L, Ai Y, Yang Z, Xu X, Yang Y, Cheng Z. Rapid Adaptation of Chimonobambusa opienensis Leaves to Crown-Thinning in Giant Panda Ecological Corridor, Niba Mountain. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112109. [PMID: 37299088 DOI: 10.3390/plants12112109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Leaf traits reflect the ecological strategy in heterogeneous contexts and are widely used to explore the adaption of plant species to environmental change. However, the knowledge of short-term effect of canopy management on understorey plant leaf traits is still limited. Here, we studied the short-term effect of crown-thinning on the leaf morphological traits of bamboo (Chimonobambusa opienensis), an important understorey plant and staple food for the giant panda (Ailuropoda melanoleuca) of Niba Mountain. Our treatments were two crown-thinnings (spruce plantation, CS, and deciduous broad-leaved forest, CB) and two controls (broad-leaved forest canopy, FC, and the bamboo grove of clearcutting, BC). The results showed that: the CS enhanced the annual leaf length, width, area, and thickness, CB decreased almost all annual leaf traits, and perennial leaf traits in CS and CB were the opposite. The log-transformed allometric relationships of length vs. width, biomass vs. area were significantly positive while those of specific leaf area vs. thickness were significantly negative, which varied largely in treatments and age. The leaf traits and allometric relationships suggested that the CS created a more suitable habitat for bamboo growth. This study highlighted that the understorey bamboo leaf traits could adapt the improved light environment induced by crown-thinning rapidly.
Collapse
Affiliation(s)
- Di Fang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Junren Xian
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Guopeng Chen
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanbin Zhang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hantang Qin
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 201100, China
| | - Xin Fu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Liyang Lin
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxuan Ai
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhanbiao Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanxiang Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhang Cheng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Koyama K, Smith DD. Scaling the leaf length-times-width equation to predict total leaf area of shoots. ANNALS OF BOTANY 2022; 130:215-230. [PMID: 35350072 PMCID: PMC9445601 DOI: 10.1093/aob/mcac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS An individual plant consists of different-sized shoots, each of which consists of different-sized leaves. To predict plant-level physiological responses from the responses of individual leaves, modelling this within-shoot leaf size variation is necessary. Within-plant leaf trait variation has been well investigated in canopy photosynthesis models but less so in plant allometry. Therefore, integration of these two different approaches is needed. METHODS We focused on an established leaf-level relationship that the area of an individual leaf lamina is proportional to the product of its length and width. The geometric interpretation of this equation is that different-sized leaf laminas from a single species share the same basic form. Based on this shared basic form, we synthesized a new length-times-width equation predicting total shoot leaf area from the collective dimensions of leaves that comprise a shoot. Furthermore, we showed that several previously established empirical relationships, including the allometric relationships between total shoot leaf area, maximum individual leaf length within the shoot and total leaf number of the shoot, can be unified under the same geometric argument. We tested the model predictions using five species, all of which have simple leaves, selected from diverse taxa (Magnoliids, monocots and eudicots) and from different growth forms (trees, erect herbs and rosette herbs). KEY RESULTS For all five species, the length-times-width equation explained within-species variation of total leaf area of a shoot with high accuracy (R2 > 0.994). These strong relationships existed despite leaf dimensions scaling very differently between species. We also found good support for all derived predictions from the model (R2 > 0.85). CONCLUSIONS Our model can be incorporated to improve previous models of allometry that do not consider within-shoot size variation of individual leaves, providing a cross-scale linkage between individual leaf-size variation and shoot-size variation.
Collapse
Affiliation(s)
| | - Duncan D Smith
- Department of Botany, University of Wisconsin—Madison, 430 Lincoln Dr., Madison, WI, USA
| |
Collapse
|
4
|
Zhang X, Wang C, Zhou C. The Variation of Functional Traits in Leaves and Current-Year Twigs of Quercus aquifolioides Along an Altitudinal Gradient in Southeastern Tibet. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.855547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clarifying the adaptation mechanism of alpine plants to climate or habitat under the alpine environmental gradient on the Qinghai–Tibet Plateau is substantially important to understand the their geography in alpine regions and their responses to future climate change. The spatial distribution characteristics of functional traits in leaves and current-year twigs of Quercus aquifolioides on five consecutive altitudinal gradients in Southeastern Tibet were analyzed. The relationship between the functional traits and habitat factors (topographic and soil factors) was explored. Key results: the functional traits of leaves and current-year twigs of Quercus aquifolioides in Southeastern Tibet showed significant linear variations along the altitudinal gradients (p < 0.001). Quercus aquifolioides at low altitudes tended to have shorter current-year twigs and less leaves with larger LA (leaf area) and higher RWC (relative water content) than those at high altitudes. Strong trade-off and coordination relationship were found between the functional traits of leaves and those of current-year twigs, respectively. SL (slope) and TN (total nitrogen) contributed the most to leaf functional traits (p < 0.05); AL (altitude) was the main determinant of functional traits in current-year twigs of Quercus aquifolioides in southeast Tibet. In conclusion, our observation demonstrate that the ecological adaptation strategy of Quercus aquifolioides was formed through the trade-off mechanism among various functional traits, the variation of hydrothermal conditions and soil environmental factors caused by altitude in the alpine region lead to differences in functional traits of Quercus aquifolioides along an altitudinal gradient in southeast Tibet.
Collapse
|
5
|
Yang K, Chen G, Xian J, Chen W. Varying Relationship Between Vascular Plant Leaf Area and Leaf Biomass Along an Elevational Gradient on the Eastern Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:824461. [PMID: 35498702 PMCID: PMC9040073 DOI: 10.3389/fpls.2022.824461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/07/2022] [Indexed: 06/12/2023]
Abstract
The altitudinal gradient is one of the driving factors leading to leaf trait variation. It is crucial to understand the response and adaptation strategies of plants to explore the variation of leaf traits and their scaling relationship along the altitudinal gradient. We measured six main leaf traits of 257 woody species at 26 altitudes ranging from 1,050 to 3,500 m within the eastern Qinghai-Tibet Plateau and analyzed the scaling relationships among leaf fresh weight, leaf dry weight, and leaf area. The results showed that leaf dry weight increased significantly with elevation, while leaf fresh weight and leaf area showed a unimodal change. Leaf dry weight and fresh weight showed an allometric relationship, and leaf fresh weight increased faster than leaf dry weight. The scaling exponent of leaf area and leaf fresh weight (or dry weight) was significantly greater than 1, indicating that there have increasing returns for pooled data. For α and normalization constants (β), only β of leaf area vs. leaf fresh weight (or dry weight) had significantly increased with altitude. All three paired traits had positive linear relationships between α and β. Our findings suggest that plants adapt to altitudinal gradient by changing leaf area and biomass investment and coordinating scaling relationships among traits. But leaf traits variation had a minor effect on scaling exponent.
Collapse
Affiliation(s)
- Ketong Yang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Guopeng Chen
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Junren Xian
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Weiwei Chen
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Guo X, Shi P, Niinemets Ü, Hölscher D, Wang R, Liu M, Li Y, Dong L, Niklas KJ. "Diminishing returns" for leaves of five age-groups of Phyllostachys edulis culms. AMERICAN JOURNAL OF BOTANY 2021; 108:1662-1672. [PMID: 34580863 DOI: 10.1002/ajb2.1738] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 05/12/2023]
Abstract
PREMISE Leaf mass (M) and lamina surface area (A) are important functional traits reported to obey a scaling relationship called "diminishing returns" (i.e., M ∝ Aα>1 ). Previous studies have focused primarily on eudicots and ignored whether the age of leaves affects the numerical value of the scaling exponent (i.e., α). METHODS The effect of age was examined using 1623 Phyllostachys edulis leaves from culms differing in age collected in Nanjing, China. The scaling relationships among leaf A, fresh mass (FM), and dry mass (DM) were evaluated using reduced major axis protocols. The bootstrap percentile method was used to test the significance of differences in α-values. RESULTS Overall, the numerical values of α exceeded 1.0. The scaling relationship between FM and A was statistically more robust than that between DM and A. The scaling exponents of FM vs. A exhibited a "high-low-high-low-high" numerical trend from the oldest to the youngest age-group. FM increased linearly as culm age decreased; the leaf DM per unit area (LMA) exhibited a parabolic trend across the age-groups. CONCLUSIONS "Diminishing returns" is confirmed for all but one age-group of an important monocot species. The relationship between FM and A was statistically more robust than that between DM and A for each age-group. The FM per unit A decreased with increasing age-groups, whereas the middle age-groups had a greater LMA than the oldest and youngest age-groups. These data are the first to show that the age of shoots affects the scaling relationship between leaf mass and area.
Collapse
Affiliation(s)
- Xuchen Guo
- Bamboo Research Institute, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Rd., Nanjing, 210037, China
| | - Peijian Shi
- Bamboo Research Institute, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Rd., Nanjing, 210037, China
- Tropical Silviculture and Forest Ecology, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, 51006, Estonia
- Estonian Academy of Sciences, Tallinn, 10130, Estonia
| | - Dirk Hölscher
- Tropical Silviculture and Forest Ecology, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Rong Wang
- Bamboo Research Institute, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Rd., Nanjing, 210037, China
| | - Mengdi Liu
- Bamboo Research Institute, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Rd., Nanjing, 210037, China
| | - Yirong Li
- Bamboo Research Institute, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Rd., Nanjing, 210037, China
| | - Lina Dong
- Administrative Bureau of Dr. Sun Yat-sen's Mausoleum, Nanjing, 210014, China
| | - Karl J Niklas
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
Relationship between Rural Settlements’ Plant Communities and Environmental Factors in Hilly Area of Southeast China. SUSTAINABILITY 2020. [DOI: 10.3390/su12072771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The construction of the ecological environment in rural settlements is a very important part of the development of human settlements. Key to this construction is the coordinated and sustainable development of plant environment, geographical environment, and human activities. Therefore, it is necessary to study the characteristics of plant diversity and their driving mechanisms. The study area, ‘Shanchuan Town’, is located in the hilly area of Southeast China, Anji County, Zhejiang Province. As bamboo forests cover 62% of the total forests, it has the reputation of being the “China town of bamboo”. To interpret rural plant community features, we extracted topography data by the field survey, satellite image, and Digital Elevation Model (DEM) based on ArcGIS platform, then used Spearman’s correlation and a redundancy analysis to examine the relationships between explanatory variables (e.g., plot elevation, slope aspect and architectural height, etc.) and the distribution of plant community diversity. In this study, 227 plots were selected from 14 settlements to investigate totally 105, 88, 206, and 17 species of trees, shrubs, herbs, and vines, respectively, belonging to 147 families, 324 genera, and 416 species. Among them, there were 19 bamboo species, and 47 species of alien plants, which accounted for 11.3% of the total. The dominant trees and shrubs were mainly native species with high edible or ornamental value. The dominant bamboo species were common species for bamboo shoots in Zhejiang Province, while most of the dominant herbaceous species were alien species. Among the explanatory variables, the impact of plot elevation (PE) on plant community was significantly higher than those of other explanatory factors. The correlation analysis showed that the richness and diversity indices of different plant life layers were significantly related to PE. Among the architectural factors, the architectural orientation (AO) and layout type (AT) effect on shrubs and other herbaceous species was stronger than those on trees and bamboo. There was a high plant community richness in the study area, and both topography and architectural factors had a significant effect on plant community. Therefore, construction of the plant landscape should conform to the topography and regulate the residential construction activities properly, so as to get rid of urban planning thinking and the excessive pursuit of plant diversity, realizing the sustainable development of ecological environment in settlements.
Collapse
|