1
|
Sannino C, Cannone N, D'Alò F, Franzetti A, Gandolfi I, Pittino F, Turchetti B, Mezzasoma A, Zucconi L, Buzzini P, Guglielmin M, Onofri S. Fungal communities in European alpine soils are not affected by short-term in situ simulated warming than bacterial communities. Environ Microbiol 2022; 24:4178-4192. [PMID: 35691701 DOI: 10.1111/1462-2920.16090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
The impact of global warming on biological communities colonizing European alpine ecosystems was recently studied. Hexagonal open top chambers (OTCs) were used for simulating a short-term in situ warming (estimated around 1°C) in some alpine soils to predict the impact of ongoing climate change on resident microbial communities. Total microbial DNA was extracted from soils collected either inside or outside the OTCs over 3 years of study. Bacterial and fungal rRNA copies were quantified by qPCR. Metabarcoding sequencing of taxonomy target genes was performed (Illumina MiSeq) and processed by bioinformatic tools. Alpha- and beta-diversity were used to evaluate the structure of bacterial and fungal communities. qPCR suggests that, although fluctuations have been observed between soils collected either inside and outside the OTCs, the simulated warming induced a significant (p < 0.05) shift only for bacterial abundance. Likewise, significant (p < 0.05) changes in bacterial community structure were detected in soils collected inside the OTCs, with a clear increase of oligotrophic taxa. On the contrary, fungal diversity of soils collected either inside and outside the OTCs did not exhibit significant (p < 0.05) differences, suggesting that the temperature increase in OTCs compared to ambient conditions was not sufficient to change fungal communities.
Collapse
Affiliation(s)
- Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Nicoletta Cannone
- Department of Theoretical and Applied Sciences, Insubria University, Varese, Italy
| | - Federica D'Alò
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Isabella Gandolfi
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Francesca Pittino
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Ambra Mezzasoma
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Mauro Guglielmin
- Department of Theoretical and Applied Sciences, Insubria University, Varese, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
2
|
Treeline-Quo Vadis? An Ecophysiological Approach. FORESTS 2022. [DOI: 10.3390/f13060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
At high elevation or latitude, the margin of the life-form tree is set by low temperature, with trees defined as upright woody species taller than 2–3 m. Globally, the temperature limit of the life-form tree occurs whenever the growing season mean soil temperature declines to 6.7 ± 0.8 °C. Disturbance and human land use, however, can cause trees to be absent from the climatic treeline. After addressing definitions and concepts related to treeline ecophysiology and examining treeline structure and dynamics, the focus will be on future treeline developments with respect to climate, competition and land use change. Finally, changes in economic structure and land use within the treeline ecotone are outlined with respect to net ecosystem production and year-round evapotranspiration.
Collapse
|
3
|
Stand Biomass at Treeline Ecotone in Russian Subarctic Mountains Is Primarily Related to Species Composition but Its Dynamics Driven by Improvement of Climatic Conditions. FORESTS 2022. [DOI: 10.3390/f13020254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change effects are strongest in forest ecosystems at the limit of their distributions. Despite the evidence that treelines have shifted upwards by hundreds of meters, knowledge of the associated changes in the stand biomass is limited. In this study, stand biomass and changes to it during the last centuries were estimated along 20 altitudinal transects reaching from the historical (located in the 1950s–1960s) closed forest line up to the current treelines on mountain slopes of three subarctic regions of Russia (Kola Peninsula, Polar Urals, and Putorana Plateau) along a 2200 km long longitudinal gradient. The estimates were based on allometric measurements of 139 trees of five species (Betula pubescens Ehrh. ssp. tortuosa, Pinus sylvestris L., Picea abies Ledeb. ssp. obovata, Larix sibirica Ledeb., and Larix gmelinii Rupr.), stand structure assessments, and the demographic patterns of 9300 trees. During the 20th century, the growth and establishment of trees at the forest–mountain tundra transition (340–500 m width) increased exponentially. Since 1910 forest expansion and densification led to an accumulation of 621–748 tons of aboveground stand biomass per km of treeline length. The accumulation was two times higher below than above the contemporary closed forest line. Data analysis of weather stations showed that the 20th century’s climate had changed in a similar manner in the three study regions, namely vegetation periods became longer (8–10 days) and warmer (0.6–0.9 °C) and more snow fell in the cold period (+10–30%). Our results indicate that regional patterns in stand biomass at the treeline ecotone are primarily related to tree species composition as determined by macroclimatic conditions (e.g., continentality, sunshine hours), snowpack depth, and growing season duration. However, the stand biomass accumulation was driven by increases of early summer temperatures and early winter precipitation during the last century.
Collapse
|
4
|
Pampuch T, Anadon-Rosell A, Trouillier M, Lange J, Wilmking M. Direct and Indirect Effects of Environmental Limitations on White Spruce Xylem Anatomy at Treeline. FRONTIERS IN PLANT SCIENCE 2021; 12:748055. [PMID: 34759941 PMCID: PMC8573320 DOI: 10.3389/fpls.2021.748055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Treeline ecosystems are of great scientific interest to study the effects of limiting environmental conditions on tree growth. However, tree growth is multidimensional, with complex interactions between height and radial growth. In this study, we aimed to disentangle effects of height and climate on xylem anatomy of white spruce [Picea glauca (Moench) Voss] at three treeline sites in Alaska; i.e., one warm and drought-limited, and two cold, temperature-limited. To analyze general growth differences between trees from different sites, we used data on annual ring width, diameter at breast height (DBH), and tree height. A representative subset of the samples was used to investigate xylem anatomical traits. We then used linear mixed-effects models to estimate the effects of height and climatic variables on our study traits. Our study showed that xylem anatomical traits in white spruce can be directly and indirectly controlled by environmental conditions: hydraulic-related traits seem to be mainly influenced by tree height, especially in the earlywood. Thus, they are indirectly driven by environmental conditions, through the environment's effects on tree height. Traits related to mechanical support show a direct response to environmental conditions, mainly temperature, especially in the latewood. These results highlight the importance of assessing tree growth in a multidimensional way by considering both direct and indirect effects of environmental forcing to better understand the complexity of tree growth responses to the environment.
Collapse
Affiliation(s)
- Timo Pampuch
- Institute of Botany and Landscape Ecology, University Greifswald, Greifswald, Germany
| | - Alba Anadon-Rosell
- Institute of Botany and Landscape Ecology, University Greifswald, Greifswald, Germany
- CREAF – Centre for Research on Ecology and Forestry Applications, Barcelona, Spain
| | - Mario Trouillier
- Institute of Botany and Landscape Ecology, University Greifswald, Greifswald, Germany
| | - Jelena Lange
- Institute of Botany and Landscape Ecology, University Greifswald, Greifswald, Germany
- Department of Physical Geography and Geoecology, Charles University in Prague, Prague, Czechia
| | - Martin Wilmking
- Institute of Botany and Landscape Ecology, University Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Is New Always Better? Frontiers in Global Climate Datasets for Modeling Treeline Species in the Himalayas. ATMOSPHERE 2021. [DOI: 10.3390/atmos12050543] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Comparing and evaluating global climate datasets and their effect on model performance in regions with limited data availability has received little attention in ecological modeling studies so far. In this study, we aim at comparing the interpolated climate dataset Worldclim 1.4, which is the most widely used in ecological modeling studies, and the quasi-mechanistical downscaled climate dataset Chelsa, as well as their latest versions Worldclim 2.1 and Chelsa 1.2, with regard to their suitability for modeling studies. To evaluate the effect of these global climate datasets at the meso-scale, the ecological niche of Betula utilis in Nepal is modeled under current and future climate conditions. We underline differences regarding methodology and bias correction between Chelsa and Worldclim versions and highlight potential drawbacks for ecological models in remote high mountain regions. Regarding model performance and prediction plausibility under current climatic conditions, Chelsa-based models significantly outperformed Worldclim-based models, however, the latest version of Chelsa contains partially inherent distorted precipitation amounts. This study emphasizes that unmindful usage of climate data may have severe consequences for modeling treeline species in high-altitude regions as well as for future projections, if based on flawed current model predictions. The results illustrate the inevitable need for interdisciplinary investigations and collaboration between climate scientists and ecologists to enhance climate-based ecological model quality at meso- to local-scales by accounting for local-scale physical features at high temporal and spatial resolution.
Collapse
|