1
|
Li C, Sun L, Jia Z, Tang Y, Liu X, Zhang J, Müller C. Microbial Inoculants Drive Changes in Soil and Plant Microbiomes and Improve Plant Functions in Abandoned Mine Restoration. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39420635 DOI: 10.1111/pce.15215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
The application of microbial inoculants holds promise for the sustainable restoration of abandoned mine sites by affecting soil nutrients and microbial communities. However, the responses of plant microbial communities to microbial inoculants in mine restoration remain largely unknown. To bridge this knowledge gap, we conducted a 4-year field experiment at an abandoned carbonate mine site to assess the impacts of microbial inoculants on the soil-plant microbiome. Our findings revealed that microbial inoculants significantly changed roots, fine root bacterial and fungal communities. Further, no significant correlations were observed between the soil-plant nutrient content (Z-score) and microbial alpha diversity. However, a significantly positive correlation was found between the relative abundance of the keystone ecological cluster (Module #1) and soil-plant nutrient content. The application of microbial inoculants also increased complexity, albeit decreased stability of plant microbiome networks, alongside a reduction in stochastic assembly. Conversely, they decreased the complexity but increased the stability of soil microbiome networks, accompanied by an increase in stochastic assembly. Notably, the number of specifically enriched microbiome functional traits of roots and root nodules under the microbial inoculant treatments surpassed that of the control. In summary, our findings underscored the potential of microbial inoculants to enhance soil-plant functionality at abandoned mine restoration sites.
Collapse
Affiliation(s)
- Chong Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Lianhao Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Zhaohui Jia
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | | | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Christoph Müller
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Ireland
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Gießen, Germany
| |
Collapse
|
2
|
Wang L, Tang X, Liu X, Xue R, Zhang J. Mineral solubilizing microorganisms and their combination with plants enhance slope stability by regulating soil aggregate structure. FRONTIERS IN PLANT SCIENCE 2023; 14:1303102. [PMID: 38223289 PMCID: PMC10786348 DOI: 10.3389/fpls.2023.1303102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/16/2023] [Indexed: 01/16/2024]
Abstract
Introduction The stability of exposed slopes is prone to natural disasters, seriously threatening socio-economic and human security. Through years of exploration and research, we proposed an active permanent greening (APG) method based on patented mineral solubilizing microorganisms (MSMs) as an improvement over the traditional greening method. Methods In this study, we selected two MSMs (Bacillus thuringiensis and Gongronella butleri) and a plant species (Lolium perenne L.) set up six treatments (T1, T2, T3, T4, T5, and T6) to investigate the effectiveness of the MSMs and their combinations with the plant species on the soil stability using APG method. Results We noted that both MSMs and the plant species significantly improved soil aggregate stability and organic matter content. Of all the treatments, the T1 treatment exhibited better results, with soil aggregate stability and organic matter content increased to 45.63% and 137.57%, respectively, compared to the control. Soil stability was significant positively correlated with macroaggregate content and negatively with microaggregates. Using structural equation modeling analysis, we further evaluated the mechanism underpinning the influence of organic matter content and fractions on the content of each graded agglomerates. The analysis showed that the macroaggregate content was influenced by the presence of the plant species, primarily realized by altering the content of organic matter and aromatic and amide compounds in the agglomerates, whereas the microaggregate content was influenced by the addition of MSMs, primarily realized by the content of organic matter and polysaccharide compounds. Overall, we observed that the effect of the co-action of MSMs and the plant species was significantly better than that of using MSMs or the plant species alone. Discussion The findings of this study provide reliable data and theoretical support for the development and practical application of the APG method to gradually develop and improve the new greening approach.
Collapse
Affiliation(s)
- Lingjian Wang
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xinggang Tang
- Jiangxi Institute of Land Space Survey and Planning, Nanchang, Jiangxi, China
- Technology Innovation Center for Land Spatial Eco-protection and Restoration in Great Lakes Basin, Ministry of Natural Resources (MNR), Nanchang, Jiangxi, China
| | - Xin Liu
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Rengui Xue
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jinchi Zhang
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Li C, Nie H, Zhang S, Jia Z, Ma S, Li T, Zhai L, Zhang B, Liu X, Zhang J, Müller C. Mineral-solubilizing microbial inoculant positively affects the multifunctionality of anthropogenic soils in abandoned mining areas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118553. [PMID: 37399621 DOI: 10.1016/j.jenvman.2023.118553] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
The mining industry has a significant negative impact on ecosystems, and the remediation of abandoned mining sites requires effective strategies. One promising approach is the incorporation of mineral-solubilizing microorganisms into current external soil spray seeding technologies. These microorganisms possess the ability to decrease mineral particle sizes, promote plant growth, and enhance the release of vital soil nutrients. However, most previous studies on mineral-solubilizing microorganisms have been conducted in controlled greenhouse environments, and their practical application in field settings remains uncertain. To address this knowledge gap, we conducted a four-year field experiment at an abandoned mining site to investigate the efficacy of mineral-solubilizing microbial inoculants in restoring derelict mine ecosystems. We assessed soil nutrients, enzyme activities, functional genes, and soil multifunctionality. We also examined microbial compositions, co-occurrence networks, and community assembly processes. Our results demonstrated that the application of mineral-solubilizing microbial inoculants significantly enhanced soil multifunctionality. Interestingly, certain bacterial phyla or class taxa with low relative abundances were found to be key drivers of multifunctionality. Surprisingly, we observed no significant correlation between microbial alpha diversity and soil multifunctionality, but we did identify positive associations between the relative abundance and biodiversity of keystone ecological clusters (Module #1 and #2) and soil multifunctionality. Co-occurrence network analysis revealed that microbial inoculants reduced network complexity while increasing stability. Additionally, we found that stochastic processes played a predominant role in shaping bacterial and fungal communities, and the inoculants increased the stochastic ratio of microbial communities, particularly bacteria. Moreover, microbial inoculants significantly decreased the relative importance of dispersal limitations and increased the relative importance of drift. High relative abundances of certain bacterial and fungal phyla were identified as major drivers of the microbial community assembly process. In conclusion, our findings highlight the crucial role of mineral-solubilizing microorganisms in soil restoration at abandoned mining sites, shedding light on their significance in future research endeavors focused on optimizing the effectiveness of external soil spray seeding techniques.
Collapse
Affiliation(s)
- Chong Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China; Institute of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Hui Nie
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Shuifeng Zhang
- Faculty of Information Technology, Nanjing Forest Police College, Nanjing, 210000, China
| | - Zhaohui Jia
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Shilin Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Tao Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Lu Zhai
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 74078, USA; Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Bo Zhang
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China.
| | - Christoph Müller
- Institute of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany; School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin, Ireland; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany
| |
Collapse
|
4
|
Wang L, Tang X, Liu X, Zhang J. Active permanent greening - a new slope greening technology based on mineral solubilizing microorganisms. FRONTIERS IN PLANT SCIENCE 2023; 14:1219139. [PMID: 37711299 PMCID: PMC10498118 DOI: 10.3389/fpls.2023.1219139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Introduction With social and economic development and the associated large-scale exploitation of natural resources, the number of slopes has significantly increased. As slope instability can lead to serious geological disasters, the ecological protection and reconstruction of slopes has become a hot topic of common global concern. Methods In order to achieve scientific slope management and overcome the difficulty of maintaining slope greening in the long term, this study explored eight strategies (A, B, C, AB, AC, BC, ABC, CK), involving different patented mineral solubilizing microorganisms (MSMs), and analyzed the field application of active permanent greening (APG) based on MSMs. Results The results revealed that MSMs significantly increased the content of effective metal ions and available nutrients in soil and enhanced soil enzyme activity. Among all strategies, strategy A showed significant superiority, with soil effective calcium, magnesium, potassium, nitrogen, phosphorus and organic matter contents increasing by 51.62%, 55.41%, 30.42%, 39.77%, 181.69% and 76.92%, respectively, while urease, sucrase and peroxidase activities increased by 89.59%, 74.68% and 85.30%. MSMs strongly promoted the growth of Amorpha. Strategy A showed the best performance, with plant seedling height, ground diameter, leaf area, root length, and root volume increasing by 95.75%, 47.78%, 124.14%, 108.83%, and 139. 86%, respectively. According to a comprehensive evaluation using the entropy-analysis hierarchy process, strategy A has great potential for application. The field test results verified that APG has significantly better greening performance than the traditional greening method, with high vegetation cover and stable soil layer. Discussion The results of this study provide a reliable practical basis and technical reference for the development, promotion, and application of APG.
Collapse
Affiliation(s)
- Lingjian Wang
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xinggang Tang
- Jiangxi Institute of Land Space Survey and Planning, Nanchang, Jiangxi, China
- Technology Innovation Center for Land Spatial Eco-protection and Restoration in Great Lakes Basin, MNR, Nanchang, Jiangxi, China
| | - Xin Liu
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jinchi Zhang
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Li C, Jia Z, Zhang S, Li T, Ma S, Cheng X, Chen M, Nie H, Zhai L, Zhang B, Liu X, Zhang J, Müller C. The positive effects of mineral-solubilizing microbial inoculants on asymbiotic nitrogen fixation of abandoned mine soils are driven by keystone phylotype. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163663. [PMID: 37094687 DOI: 10.1016/j.scitotenv.2023.163663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Toward the restoration of the increasing numbers of abandoned mines across China, external-soil spray seeding technologies have become more extensively utilized. However, considerable challenges remain that seriously hamper the effectiveness of these technologies, such as inadequate nutrient availability for plants. Previous studies have shown that mineral-solubilizing microbial inoculants can increase the nodules of legumes. However, their effects on symbiotic nitrogen fixation (SNF), asymbiotic nitrogen fixation (ANF), and diazotrophic communities remain unknown. Further, research into the application of functional microorganisms for the restoration of abandoned mines has been conducted either in greenhouses, or their application in the field has been too brief. Thus, we established a four-year field experiment in an abandoned mine and quantified the SNF, ANF, and diazotrophic communities. To the best of our knowledge, this study is the first to describe the long-term application of specific functional microorganisms for the remediation of abandoned mine sites in the field. We revealed that mineral-solubilizing microbial inoculants significantly increased the soil ANF rate and SNF content. There was no significant correlation between the diazotrophic alpha diversity and soil ANF rate; however, there were strong positive associations between the relative abundance and biodiversity of keystone phylotype (module #5) within ecological clusters and the ANF rate. Molecular ecological networks indicated that microbial inoculants increased network complexity and stability. Moreover, the inoculants significantly enhanced the deterministic ratio of diazotrophic communities. Furthermore, homogeneous selection predominantly mediated the assembly of soil diazotrophic communities. It was concluded that mineral-solubilizing microorganisms played a critical role in maintaining and enhancing nitrogen, which offers a new solution with great potential for the restoration of ecosystems at abandoned mine sites.
Collapse
Affiliation(s)
- Chong Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China; Institute of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany.
| | - Zhaohui Jia
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China.
| | - Shuifeng Zhang
- Faculty of Information Technology, Nanjing Forest Police College, Nanjing 210000, China.
| | - Tao Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China.
| | - Shilin Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China.
| | - Xuefei Cheng
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China.
| | - Meiling Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China.
| | - Hui Nie
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China.
| | - Lu Zhai
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK 74078, USA; Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Bo Zhang
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China.
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China.
| | - Christoph Müller
- Institute of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin, Ireland; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany.
| |
Collapse
|
6
|
Ahmad I, Ahmad M, Bushra, Hussain A, Mumtaz MZ, Najm-ul-Seher, Abbasi GH, Nazli F, Pataczek L, Ali HM. Mineral-Solubilizing Bacteria-Mediated Enzymatic Regulation and Nutrient Acquisition Benefit Cotton’s (Gossypium hirsutum L.) Vegetative and Reproductive Growth. Microorganisms 2023; 11:microorganisms11040861. [PMID: 37110284 PMCID: PMC10146682 DOI: 10.3390/microorganisms11040861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Many farmers’ incomes in developing countries depend on the cultivation of major crops grown in arid and semi-arid regions. The agricultural productivity of arid and semi-arid areas primarily relies on chemical fertilizers. The effectiveness of chemical fertilizers needs to improve by integration with other sources of nutrients. Plant growth-promoting bacteria can solubilize nutrients, increase plant nutrient uptake, and supplement chemical fertilizers. A pot experiment evaluated the promising plant growth-promoting bacterial strain’s effectiveness in promoting cotton growth, antioxidant enzymes, yield, and nutrient uptake. Two phosphate solubilizing bacterial strains (Bacillus subtilis IA6 and Paenibacillus polymyxa IA7) and two zinc solubilizing bacterial strains (Bacillus sp. IA7 and Bacillus aryabhattai IA20) were coated on cotton seeds in a single as well as co-inoculation treatments. These treatments were compared with uninoculated controls in the presence and absence of recommended chemical fertilizer doses. The results showed the co-inoculation combination of Paenibacillus polymyxa IA7 and Bacillus aryabhattai IA20 significantly increased the number of bolls, seed cotton yield, lint yield, and antioxidants activities, including superoxide dismutase, guaiacol peroxidase, catalase, and peroxidase. Co-inoculation combination of Bacillus subtilis IA6 and Bacillus sp. IA16 promoted growth attributes, including shoot length, root length, shoot fresh weight, and root fresh weight. This co-inoculation combination also increased soil nutrient content. At the same time, Paenibacillus polymyxa IA7 + Bacillus aryabhattai IA20 increased nutrient uptake by plant shoots and roots compared.
Collapse
|
7
|
Li C, Jia Z, Ma S, Liu X, Zhang J, Müller C. Plant and Native Microorganisms Amplify the Positive Effects of Microbial Inoculant. Microorganisms 2023; 11:570. [PMID: 36985145 PMCID: PMC10055949 DOI: 10.3390/microorganisms11030570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Microbial inoculants can be used to restore abandoned mines because of their positive effects on plant growth and soil nutrients. Currently, soils in greenhouse pot studies are routinely sterilized to eradicate microorganisms, allowing for better inoculant colonization. Large-scale field sterilization of abandoned mining site soils for restoration is difficult, though. In addition, microbial inoculants have an impact on plants. Plants also have an impact on local microbes. The interactions among microbial inoculants, native microorganisms, and plants, however, have not been studied. We created a pot experiment utilizing the soil and microbial inoculant from a previous experiment because it promoted plant growth in that experiment. To evaluate the effects of the plants, native microorganisms, and microbial inoculants, we assessed several indicators related to soil elemental cycling and integrated them into the soil multifunctionality index. The addition of the microbial inoculant and sterilizing treatment had a significant impact on alfalfa growth. When exposed to microbial inoculant treatments, the plant and sterilization treatments displayed radically different functional characteristics, where most of the unsterilized plant treatment indices were higher than those of the others. The addition of microbial inoculant significantly increased soil multifunctionality in plant treatments, particularly in the unsterilized plant treatment, where the increase in soil multifunctionality was 260%. The effect size result shows that the positive effect of microbial inoculant on soil multifunctionality and unsterilized plant treatment had the most significant promotion effect. Plant and native microorganisms amplify the positive effects of microbial inoculant.
Collapse
Affiliation(s)
- Chong Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Institute of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Zhaohui Jia
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Shilin Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Christoph Müller
- Institute of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, D04V1W8 Dublin, Ireland
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| |
Collapse
|
8
|
Valsalan R, Mathew D, Devaki G. Draft genome of Gongronella butleri reveals the genes contributing to its biodegradation potential. J Genet Eng Biotechnol 2022; 20:74. [PMID: 35583842 PMCID: PMC9117579 DOI: 10.1186/s43141-022-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Gongronella butleri is a fungus with many industrial applications including the composting of solid biowaste. Kerala Agricultural University, India, has developed a microbial consortium of which GbKAU strain of G. butleri is a major component. Even with great industrial significance, genome of this fungus is not published, and the genes and pathways contributing to the applications are not understood. This study had the objective to demonstrate the solid biowaste decomposing capability of the strain, to sequence and annotate the genome, and to reveal the genes and pathways contributing to its biodegradation potential. RESULTS Strain GbKAU of G. butleri isolated and purified from the organic compost was found to produce higher levels of laccase and amylase, compared to Bacillus subtilis which is being widely used in biosolid waste management. Both were shown to be equally efficient in the in vivo composting capabilities. Whole genome sequencing has given ~11 million paired-end good quality reads. De novo assembly using dual-fold approach has yielded 44,639 scaffolds with draft genome size of 29.8 Mb. A total of 11,428 genes were predicted and classified into 359 groups involved in diverse pathways, of which 14 belonged to the enzymes involved in the degradation of macromolecules. Seven previously sequenced strains of the fungus were assembled and annotated. A direct comparison showed that the number of genes present in those strains was comparable to our strain, while all the important biodegrading genes were conserved across the genomes. Gene Ontology analysis had classified the genes according to their molecular function, biological process, and cellular component. A total of 104,718 SSRs were mined and classified to mono- to hexa-nucleotide repeats. The variant analysis in comparison with the closely related genus Cunninghamella has revealed 1156 variants. CONCLUSIONS Apart from demonstrating the biodegradation capabilities of the GbKAU strain of G. butleri, the genome of this industrially important fungus was sequenced, de novo assembled, and annotated. GO analysis has classified the genes based on their functions, and the genes involved in biodegradation were revealed. Biodegradation potential, genome features in comparison with other strains, and the functions of the identified genes are discussed.
Collapse
Affiliation(s)
- Ravisankar Valsalan
- Bioinformatics Centre, Kerala Agricultural University, Thrissur, 680656, India
| | - Deepu Mathew
- Bioinformatics Centre, Kerala Agricultural University, Thrissur, 680656, India.
| | - Girija Devaki
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thrissur, 680656, India
| |
Collapse
|
9
|
Farda B, Djebaili R, Vaccarelli I, Del Gallo M, Pellegrini M. Actinomycetes from Caves: An Overview of Their Diversity, Biotechnological Properties, and Insights for Their Use in Soil Environments. Microorganisms 2022; 10:453. [PMID: 35208907 PMCID: PMC8875103 DOI: 10.3390/microorganisms10020453] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/21/2022] Open
Abstract
The environmental conditions of caves shape microbiota. Within caves' microbial communities, actinomycetes are among the most abundant bacteria. Cave actinomycetes have gained increasing attention during the last decades due to novel bioactive compounds with antibacterial, antioxidant and anticancer activities. However, their potential role in soil environments is still unknown. This review summarises the literature dealing with actinomycetes from caves, underlining for the first time their potential roles in soil environments. We provide an overview of their diversity and biotechnological properties, underling their potential role in soil environments applications. The contribution of caves' actinomycetes in soil fertility and bioremediation and crops biostimulation and biocontrol are discussed. The survey on the literature show that several actinomycetes genera are present in cave ecosystems, mainly Streptomyces, Micromonospora, and Nocardiopsis. Among caves' actinomycetes, Streptomyces is the most studied genus due to its ubiquity, survival capabilities, and metabolic versatility. Despite actinomycetes' outstanding capabilities and versatility, we still have inadequate information regarding cave actinomycetes distribution, population dynamics, biogeochemical processes, and metabolisms. Research on cave actinomycetes needs to be encouraged, especially concerning environmental soil applications to improve soil fertility and health and to antagonise phytopathogens.
Collapse
Affiliation(s)
| | - Rihab Djebaili
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (B.F.); (I.V.); (M.D.G.)
| | | | | | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (B.F.); (I.V.); (M.D.G.)
| |
Collapse
|
10
|
Bennis M, Perez-Tapia V, Alami S, Bouhnik O, Lamin H, Abdelmoumen H, Bedmar EJ, Missbah El Idrissi M. Characterization of plant growth-promoting bacteria isolated from the rhizosphere of Robinia pseudoacacia growing in metal-contaminated mine tailings in eastern Morocco. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114321. [PMID: 35021593 DOI: 10.1016/j.jenvman.2021.114321] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Mining activity in the Touissit district of Eastern Morocco has led to an unprecedented accumulation of heavy metals, mainly lead and zinc, in the tailing ponds of the open-air mines. This poses a real danger to both the environment and local population. OBJECTIVES The goal of this work was to characterize the Plant Growth Promoting Rhizobacteria (PGPR) isolated from the rhizosphere soil of R. pseudoacacia plants grown wild in the abandoned Pb- and Zn-contaminated tailing ponds in the mining district of Touissit, in Eastern Morocco. MAIN RESULTS One hundred bacterial strains were isolated from the rhizosphere of black locust (Robinia pseudoacacia L.) plants growing naturally in the Touissit mine tailings. Quantitative determination of indole-acetic and siderophores production, inorganic phosphate solubilization, hydrolysis of 1-aminocyclopropane-1-carboxylic acid (ACC deaminase activity), and ability to act as a biocontrol agent allowed selection of the 3 strains, 7MBT, 17MBT and 84MBT with improved PGP properties. The three strains grew well in the presence of high concentration of Pb-acetate and ZnCl2; and the addition of Pb or Zn to the culture medium differently affected the PGP properties analyzed. NOVELTY STATEMENT Inoculation of black locust grown with the 3 selected strains, in the presence 1000 μg ml-1 of Pb-acetate, produced varying effects on the plant dry weight. The strain 84MBT alone or in combination with strains 7MBT and 17MBT increased significantly the dry weight of the plants by 91, 62, and 85% respectively. The 16S rRNA gene sequence analysis of each strain showed that the strains 7MBT 17MBT and 84MBT had 99.34, 100, and had 99.72% similarity with Priestia endophytica (formerly B. endophyticus), B. pumilus NBRC 12092T, and B. halotolerans NBRC 15718T, respectively.
Collapse
Affiliation(s)
- Meryeme Bennis
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Vicente Perez-Tapia
- Departamento de Microbiología del Suelo y Sistemas Simbióticos Estación Experimental del Zaidín, CSIC Apartado Postal 419, 18008, Granada, Spain
| | - Soufiane Alami
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Omar Bouhnik
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Hanane Lamin
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Hanaa Abdelmoumen
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Eulogio J Bedmar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos Estación Experimental del Zaidín, CSIC Apartado Postal 419, 18008, Granada, Spain
| | - Mustapha Missbah El Idrissi
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco.
| |
Collapse
|