1
|
Kankan P, Zhipeng R, Shengnan W, Yu T, Shuo N, Xuan M, Yuzhuo B, Jing Y, Jing C. TaTCP21-A negatively regulates wheat cold tolerance via repressing expression of TaDREB1C. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109353. [PMID: 39616803 DOI: 10.1016/j.plaphy.2024.109353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 02/05/2025]
Abstract
Cold stress is one of the important harmful factors that seriously affect wheat (Triticum aestivum) yield and quality. TCP transcription factor plays important roles in the process of plant cell proliferation and growth. In this study, we identified 60 TaTCP genes expressed in strong cold resistant winter wheat variety Dongnongdongmai1 (Dn1) under cold stress by previous transcriptome data, of which 13 TaTCPs showed significant differences in expression. The evolution of TaTCPs was analyzed, and the results showed that there were 2 homologous pairs in TaTCPs with AtTCPs and 90 homologous pairs in TaTCPs with OsTCPs. Expression patterns of 20 TaTCPs under cold stress were analyzed by qRT-PCR, and TCP21-A with significant expression differences was screened. We obtained tcp21-A mutant from the EMS mutant library of winter wheat Kenong9204. We observed that the mutation of TaTCP21-A significantly improved its cold resistance. Subsequently, transcriptome analysis revealed that TCP21-A inhibited expression of cold responsive gene TaDREB1C. Finally, subcellular localization and yeast one hybrid were used to verify that TCP21-A can act as a transcription factor to bind to the GGTCCC promoter element. Luciferase reporter gene experiment showed that TCP21-A inhibits the transcriptional activity of the TaDREB1C promoter. In summary, we systematically analyzed the expression patterns of TaTCP family members in Dn1 under cold stress and demonstrated that TaTCP21-A negatively regulated wheat cold tolerance by inhibiting expression of TaDREB1C. These results provide new insights into the functional mechanism of TaTCP transcription factors in response to cold stress.
Collapse
Affiliation(s)
- Peng Kankan
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ren Zhipeng
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wang Shengnan
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tian Yu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ni Shuo
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ma Xuan
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bao Yuzhuo
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yu Jing
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cang Jing
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
2
|
Li L, Du L, Cao Q, Yang Z, Liu Y, Yang H, Duan X, Meng Z. Salt Tolerance Evaluation of Cucumber Germplasm under Sodium Chloride Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2927. [PMID: 37631139 PMCID: PMC10459999 DOI: 10.3390/plants12162927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Cucumber (Cucumis sativus L.) is an important horticultural crop worldwide. Sodium (Na+) and chloride (Cl-) in the surface soil are the major limiting factors in coastal areas of Shandong Province in China. Therefore, to understand the mechanism used by cucumber to adapt to sodium chloride (NaCl), we analyzed the phenotypic and physiological indicators of eighteen cucumber germplasms after three days under 100 and 150 mM NaCl treatment. A cluster analysis revealed that eighteen germplasms could be divided into five groups based on their physiological indicators. The first three groups consisted of seven salt-tolerant and medium salt-tolerant germplasms, including HLT1128h, Zhenni, and MC2065. The two remaining groups consisted of five medium salt-sensitive germplasms, including DM26h and M1-2-h-10, and six salt-sensitive germplasms including M1XT and 228. A principal component analysis revealed that the trend of comprehensive scores was consistent with the segmental cluster analysis and survival rates of cucumber seedlings. Overall, the phenotype, comprehensive survival rate, cluster analysis, and principal component analysis revealed that the salt-tolerant and salt-sensitive germplasms were Zhenni, F11-15, MC2065, M1XT, M1-2-h-10, and DM26h. The results of this study will provide references to identify or screen salt-tolerant cucumber germplasms and lay a foundation for breeding salt-tolerant cucumber varieties.
Collapse
Affiliation(s)
- Libin Li
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| | - Lianda Du
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Qiwei Cao
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| | - Zonghui Yang
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| | - Yihan Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Hua Yang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xi Duan
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Zhaojuan Meng
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| |
Collapse
|
3
|
Shang X, Han Z, Zhang D, Wang Y, Qin H, Zou Z, Zhou L, Zhu X, Fang W, Ma Y. Genome-Wide Analysis of the TCP Gene Family and Their Expression Pattern Analysis in Tea Plant ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:840350. [PMID: 35845692 PMCID: PMC9284231 DOI: 10.3389/fpls.2022.840350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors TEOSINTE BRANCHED1/CYCLOIDEA/PCF have been suggested to control the cell growth and proliferation in meristems and lateral organs. A total of 37 CsTCP genes were identified and divided into two classes, class I (PCF, group 1) and class II (CIN CYC/TB1, groups 2, and 3). The residues of TEOSINTE BRANCHED1/CYCLOIDEA/PCF of Camellia sinensis (Tea plant) (CsTCP) proteins between class I and class II were definitely different in the loop, helix I, and helix II regions; however, eighteen conserved tandem was found in bHLH. There are a large number of CsTCP homologous gene pairs in three groups. Additionally, most CsTCP proteins have obvious differences in motif composition. The results illuminated that CsTCP proteins in different groups are supposed to have complementary functions, whereas those in the same class seem to display function redundancies. There is no relationship between the number of CsTCP gene members and genome size, and the CsTCP gene family has only expanded since the divergence of monocots and eudicots. WGD/segmental duplication played a vital role in the expansion of the CsTCP gene family in tea plant, and the CsTCP gene family has expanded a lot. Most CsTCP genes of group 1 are more widely and non-specifically expressed, and the CsTCP genes of group 2 are mainly expressed in buds, flowers, and leaves. Most genes of group 1 and some genes of group 2 were up-/downregulated in varying degrees under different stress, CsTCP genes of group 3 basically do not respond to stress. TCP genes involved in abiotic stress response mostly belong to PCF group. Some CsTCP genes may have the same function as the homologous genes in Arabidopsis, but there is functional differentiation.
Collapse
Affiliation(s)
- Xiaowen Shang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhaolan Han
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Dayan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ya Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hao Qin
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Agricultural and Forestry Service Center, Suzhou, China
| | - Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Lin Zhou
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|