1
|
Tumas H, Ilska JJ, Gérardi S, Laroche J, A’Hara S, Boyle B, Janes M, McLean P, Lopez G, Lee SJ, Cottrell J, Gorjanc G, Bousquet J, Woolliams JA, MacKay JJ. High-density genetic linkage mapping in Sitka spruce advances the integration of genomic resources in conifers. G3 (BETHESDA, MD.) 2024; 14:jkae020. [PMID: 38366548 PMCID: PMC10989875 DOI: 10.1093/g3journal/jkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/03/2024] [Indexed: 02/18/2024]
Abstract
In species with large and complex genomes such as conifers, dense linkage maps are a useful resource for supporting genome assembly and laying the genomic groundwork at the structural, populational, and functional levels. However, most of the 600+ extant conifer species still lack extensive genotyping resources, which hampers the development of high-density linkage maps. In this study, we developed a linkage map relying on 21,570 single nucleotide polymorphism (SNP) markers in Sitka spruce (Picea sitchensis [Bong.] Carr.), a long-lived conifer from western North America that is widely planted for productive forestry in the British Isles. We used a single-step mapping approach to efficiently combine RAD-seq and genotyping array SNP data for 528 individuals from 2 full-sib families. As expected for spruce taxa, the saturated map contained 12 linkages groups with a total length of 2,142 cM. The positioning of 5,414 unique gene coding sequences allowed us to compare our map with that of other Pinaceae species, which provided evidence for high levels of synteny and gene order conservation in this family. We then developed an integrated map for P. sitchensis and Picea glauca based on 27,052 markers and 11,609 gene sequences. Altogether, these 2 linkage maps, the accompanying catalog of 286,159 SNPs and the genotyping chip developed, herein, open new perspectives for a variety of fundamental and more applied research objectives, such as for the improvement of spruce genome assemblies, or for marker-assisted sustainable management of genetic resources in Sitka spruce and related species.
Collapse
Affiliation(s)
- Hayley Tumas
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Joana J Ilska
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Sebastien Gérardi
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC GIV 0A6, Canada
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC GIV 0A6, Canada
| | - Jerome Laroche
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC GIV 0A6, Canada
| | - Stuart A’Hara
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Brian Boyle
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC GIV 0A6, Canada
| | - Mateja Janes
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Paul McLean
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Gustavo Lopez
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Steve J Lee
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Joan Cottrell
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Gregor Gorjanc
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC GIV 0A6, Canada
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC GIV 0A6, Canada
| | - John A Woolliams
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Midlothian EH25 9RG, UK
| | - John J MacKay
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
2
|
Freeman JS, Slavov GT, Butler JB, Frickey T, Graham NJ, Klápště J, Lee J, Telfer EJ, Wilcox P, Dungey HS. High density linkage maps, genetic architecture, and genomic prediction of growth and wood properties in Pinus radiata. BMC Genomics 2022; 23:731. [PMID: 36307760 PMCID: PMC9617409 DOI: 10.1186/s12864-022-08950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022] Open
Abstract
Background The growing availability of genomic resources in radiata pine paves the way for significant advances in fundamental and applied genomic research. We constructed robust high-density linkage maps based on exome-capture genotyping in two F1 populations, and used these populations to perform quantitative trait locus (QTL) scans, genomic prediction and quantitative analyses of genetic architecture for key traits targeted by tree improvement programmes. Results Our mapping approach used probabilistic error correction of the marker data, followed by an iterative approach based on stringent parameters. This approach proved highly effective in producing high-density maps with robust marker orders and realistic map lengths (1285–4674 markers per map, with sizes ranging from c. 1643–2292 cM, and mean marker intervals of 0.7–2.1 cM). Colinearity was high between parental linkage maps, although there was evidence for a large chromosomal rearrangement (affecting ~ 90 cM) in one of the parental maps. In total, 28 QTL were detected for growth (stem diameter) and wood properties (wood density and fibre properties measured by Silviscan) in the QTL discovery population, with 1–3 QTL of small to moderate effect size detected per trait in each parental map. Four of these QTL were validated in a second, unrelated F1 population. Results from genomic prediction and analyses of genetic architecture were consistent with those from QTL scans, with wood properties generally having moderate to high genomic heritabilities and predictive abilities, as well as somewhat less complex genetic architectures, compared to growth traits. Conclusions Despite the economic importance of radiata pine as a plantation forest tree, robust high-density linkage maps constructed from reproducible, sequence-anchored markers have not been published to date. The maps produced in this study will be a valuable resource for several applications, including the selection of marker panels for genomic prediction and anchoring a recently completed de novo whole genome assembly. We also provide the first map-based evidence for a large genomic rearrangement in radiata pine. Finally, results from our QTL scans, genomic prediction, and genetic architecture analyses are informative about the genomic basis of variation in important phenotypic traits. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08950-6.
Collapse
|