1
|
Scarpa C, Bacciu V, Ascoli D, Costa-Saura JM, Salis M, Sirca C, Marchetti M, Spano D. Estimating annual GHG and particulate matter emissions from rural and forest fires based on an integrated modelling approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167960. [PMID: 37865246 DOI: 10.1016/j.scitotenv.2023.167960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Rural and forest fires represent one of the most significant sources of emissions in the atmosphere of trace gases and aerosol particles, which significantly impact carbon budget, air quality, and human health. This paper aims to illustrate an integrated modelling approach combining spatial and non-spatial inputs to provide and enhance the estimation of GHG and particulate matter emissions from surface fires using Italy as a case study over the period 2007-2017. Three main improvements characterize the approach proposed in this work: (i) the collection and development of comprehensive and accurate data inputs related to burned area; (ii) the use of the most recent data on fuel type and load; and (iii) the modelling application to estimate fuel moisture, burning efficiency, and fuel consumption considering meteorological factors and combustion phases. On average, Italy's GHG and particulate matter emissions were 2621 Gg yr-1, ranging from a minimum of 772 Gg yr-1 in 2013 to a maximum of 7020 Gg yr-1 in 2007. Emissions from fire disturbances in broadleaf forests, shrublands, and agricultural fuel types account for about 76 % of the total. Results were compared with global and national inventories and showed good agreement, especially considering CO2 and particulate matter. The approach of this study added confidence in emission estimates, and the results can be utilized in decision support systems to address air quality management and fire impact mitigation policies.
Collapse
Affiliation(s)
- Carla Scarpa
- National Research Council, Institute of BioEconomy (CNR-IBE), 07100 Sassari, Italy.
| | - Valentina Bacciu
- National Research Council, Institute of BioEconomy (CNR-IBE), 07100 Sassari, Italy; EuroMediterranean Center on Climate Change (CMCC) Foundation, Impact on Agriculture, Forest, and Ecosystem Services (IAFES) Division, 07100 Sassari, Italy.
| | - Davide Ascoli
- University of Torino, Department of Agricultural, Forest and Food Sciences, 10095 Grugliasco, Italy.
| | - Josè Maria Costa-Saura
- EuroMediterranean Center on Climate Change (CMCC) Foundation, Impact on Agriculture, Forest, and Ecosystem Services (IAFES) Division, 07100 Sassari, Italy; University of Sassari, Department of Agriculture Sciences, 07100 Sassari, Italy; National Biodiversity Future Center, Palazzo Steri, Piazza Marina 61, 90133 Palermo, Italy.
| | - Michele Salis
- National Research Council, Institute of BioEconomy (CNR-IBE), 07100 Sassari, Italy.
| | - Costantino Sirca
- EuroMediterranean Center on Climate Change (CMCC) Foundation, Impact on Agriculture, Forest, and Ecosystem Services (IAFES) Division, 07100 Sassari, Italy; University of Sassari, Department of Agriculture Sciences, 07100 Sassari, Italy.
| | - Marco Marchetti
- University of Study of Molise, Department of Biosciences and Territory, 86090 Pesche, Italy; Fondazione Alberitalia ETS, Via Isola Capaccio 77, 47018 Santa Sofia, Italy.
| | - Donatella Spano
- EuroMediterranean Center on Climate Change (CMCC) Foundation, Impact on Agriculture, Forest, and Ecosystem Services (IAFES) Division, 07100 Sassari, Italy; University of Sassari, Department of Agriculture Sciences, 07100 Sassari, Italy.
| |
Collapse
|
2
|
Sun Y, Zhang Q, Li K, Huo Y, Zhang Y. Trace gas emissions from laboratory combustion of leaves typically consumed in forest fires in Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157282. [PMID: 35835195 DOI: 10.1016/j.scitotenv.2022.157282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Forest fires are becoming increasingly severe and frequent due to global climate change. Trace gases emitted from forest fires significantly affect atmospheric chemistry and climate change on a regional and global scale. Forest fires occur frequently in Southwest China, but systematic studies on trace gas emissions from forest fires in Southwest China are rare. Leaves of seven typical vegetation fuels based on their prominence in forest fires consumption in Southwest China were burned in a self-designed combustion device and the emission factors of eighteen trace gases (greenhouse gases, non-methane organic gases, nitrogenous gases, hydrogen chloride, and sulfur dioxide) at specific combustion stages (flaming and smoldering) were determined by using Fourier transform infrared spectroscopy, respectively. The emission factors data presented were compared with previous studies and can aid in the construction of an emission inventory. Pine needle combustion released a greater amount of methane in the smoldering stage than other broadleaf combustion. Peak values of emission factors for methane and non-methane organic gas are emitted by the smoldering of vegetation (Pinus kesiya and Pinus yunnanensis), which is endemic to forest fires in Southwest China. The emission factor for oxygenated volatile organic compounds (OVOCs) in the smoldering stage is greater than the flaming stage. This work established the relationship between modified combustion efficiency (MCE) with emission factors of hydrocarbons (except acetylene) and OVOCs. The results show that exponential fitting is more suitable than linear fitting for the seven leaf fuels (four broadleaf and three coniferous). However, the emission factors from the combustion of three coniferous fuels relative to all fuels are linear with MCE. Findings demonstrated that different combustion stages and fuel types have significant impacts on the emission factors, which also highlighted the importance of studying regional emissions.
Collapse
Affiliation(s)
- Yuping Sun
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qixing Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Kaili Li
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yinuo Huo
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yongming Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
3
|
Investigation of Long-Term Forest Dynamics in Protected Areas of Northeast China Using Landsat Data. REMOTE SENSING 2022. [DOI: 10.3390/rs14132988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Forest dynamics, including forest loss and gain, are long-term complex ecological processes affected by nature and human activities. It is particularly important to understand the long-term forest dynamics of protected areas to evaluate their conservation efforts. This study adopted the Landsat tree-canopy cover (TCC) method to derive annual TCC data for the period 1984–2020 for the protected areas of northeast China, where protection policies have been carried out since the end of the 20th century, e.g., the Natural Forest Conversion Program (NFCP). A strong correlation was found between the TCC estimates derived from Landsat and LiDAR observations, suggesting the high accuracy of TCC. Forest loss and gain events were also identified from the time series of TCC estimates. High correlations were reported for both forest loss (Producer’s accuracy = 85.21%; User’s accuracy = 84.26%) and gain (Producer’s accuracy = 87.74%; User’s accuracy = 88.31%), suggesting that the approach can be used for monitoring and evaluating the effectiveness of the NFCP and other forest conservation efforts. The results revealed a fluctuating upward trend of the TCC of the protected area from 1986 to 2018. The increased area of TCC was much larger than the decreased area, accounting for 59.68% and 40.34%, respectively, suggesting the effectiveness of protection policies. Since the NFCP was officially implemented in 1998, deforestation was effectively curbed, the area of forest loss was significantly reduced (slope: −14.24%/year), and the area of forest gain significantly increased (slope: 4.13%/year). We found that regional forest changes were mainly manifested in “forest gain after loss (forest recovery)” and “forest gain with no loss (forest newborn)”, accounting for 40.29% and 37.28% of the total area of forest change, respectively. Moreover, the forest gain area far exceeds the forest loss area, reaching 11.24 million hectares, suggesting a successful forest recovery due to forest protection.
Collapse
|
4
|
Wildfire Smoke Transport and Air Quality Impacts in Different Regions of China. ATMOSPHERE 2020. [DOI: 10.3390/atmos11090941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The air quality and human health impacts of wildfires depend on fire, meteorology, and demography. These properties vary substantially from one region to another in China. This study compared smoke from more than a dozen wildfires in Northeast, North, and Southwest China to understand the regional differences in smoke transport and the air quality and human health impacts. Smoke was simulated using the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) with fire emissions obtained from the Global Fire Emission Database (GFED). Although the simulated PM2.5 concentrations reached unhealthy or more severe levels at regional scale for some largest fires in Northeast China, smoke from only one fire was transported to densely populated areas (population density greater than 100 people/km2). In comparison, the PM2.5 concentrations reached unhealthy level in local densely populated areas for a few fires in North and Southwest China, though they were very low at regional scale. Thus, individual fires with very large sizes in Northeast China had a large amount of emissions but with a small chance to affect air quality in densely populated areas, while those in North and Southwest China had a small amount of emissions but with a certain chance to affect local densely populated areas. The results suggest that the fire and air quality management should focus on the regional air quality and human health impacts of very large fires under southward/southeastward winds toward densely populated areas in Northeast China and local air pollution near fire sites in North and Southwest China.
Collapse
|
5
|
Xu W, He HS, Hawbaker TJ, Zhu Z, Henne PD. Estimating burn severity and carbon emissions from a historic megafire in boreal forests of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:136534. [PMID: 32044500 DOI: 10.1016/j.scitotenv.2020.136534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Wildfires, especially those of large size, worsen air quality and alter the carbon cycle through combustion of large quantities of biomass and release of carbon into the atmosphere. The Black Dragon fire, which occurred in 1987 in the boreal forests of China is among the top five of such megafires ever recorded in the world. With over 30 years of accumulation of data and availability of new greenhouse gas emission accounting methods, carbon emissions from this megafire can now be estimated with improved precision and greater spatial resolution. To do this, we combined field and remote sensing data to map four burn severity classes and calculated combustion efficiency in terms of the biomass immediately consumed in the fire. Results of the study showed that 1.30 million hectares burned and 52% of that area burned with high severity. The emitted carbon dioxide equivalents (CO2e), accounted for approximately 10% of total fossil fuel emissions from China in 1987, along with CO (2%-3% of annual anthropogenic CO emissions from China) and non-methane hydrocarbons (NMHC) contributing to the atmospheric pollutants. Our study provides an important basis for carbon emission estimation and understanding the impacts of megafires.
Collapse
Affiliation(s)
- Wenru Xu
- School of Natural Resources, University of Missouri, 203 ABNR Bldg, Columbia, MO 65211, USA
| | - Hong S He
- School of Natural Resources, University of Missouri, 203 ABNR Bldg, Columbia, MO 65211, USA.
| | - Todd J Hawbaker
- U.S. Geological Survey, Denver Federal Center, MS 980, Denver, CO 80225, USA
| | - Zhiliang Zhu
- U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA 20192, USA
| | - Paul D Henne
- U.S. Geological Survey, Denver Federal Center, MS 980, Denver, CO 80225, USA
| |
Collapse
|
6
|
Abstract
Forest fire emissions have a great impact on local air quality and the global climate. However, the current and detailed regional forest fire emissions inventories remain poorly studied. Here we used Moderate Resolution Imaging Spectroradiometer (MODIS) data to estimate monthly emissions from forest fires at a spatial resolution of 500 m × 500 m in southwest China from 2013 to 2017. The spatial and seasonal variations of forest fire emissions were then analyzed at the provincial level. The results showed that the annual average emissions of CO2, CO, CH4, SO2, NH3, NOX, PM, black carbon, organic carbon, and non-methane volatile organic compounds from forest fires were 1423.19 × 103, 91.66 × 103, 4517.08, 881.07, 1545.04, 1268.28, 9838.91, 685.55, 7949.48, and 12,724.04 Mg, respectively. The forest fire emissions characteristics were consistent with the characteristics of forest fires, which show great spatial and temporal diversity. Higher pollutant emissions were concentrated in Yunnan and Tibet, with peak emissions occurring in spring and winter. Our work provides a better understanding of the spatiotemporal representation of regional forest fire emissions and basic data for forest fire management departments and related research on pollution and emissions controls. This method will also provide guidance for other areas to develop high-resolution regional forest fire emissions inventories.
Collapse
|
7
|
A Comparison of Burned Area Time Series in the Alaskan Boreal Forests from Different Remote Sensing Products. FORESTS 2019. [DOI: 10.3390/f10050363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alaska’s boreal region stores large amounts of carbon both in its woodlands and in the grounds that sustain them. Any alteration to the fire system that has naturally regulated the region’s ecology for centuries poses a concern regarding global climate change. Satellite-based remote sensors are key to analyzing those spatial and temporal patterns of fire occurrence. This paper compiles four burned area (BA) time series based on remote sensing imagery for the Alaska region between 1982–2015: Burned Areas Boundaries Dataset-Monitoring Trends in Burn Severity (BABD-MTBS) derived from Landsat sensors, Fire Climate Change Initiative (Fire_CCI) (2001–2015) and Moderate-Resolution Imaging Spectroradiometer (MODIS) Direct Broadcast Monthly Burned Area Product (MCD64A1) (2000–2015) with MODIS data, and Burned Area-Long-Term Data Record (BA-LTDR) using Advanced Very High Resolution Radiometer LTDR (AVHRR-LTDR) dataset. All products were analyzed and compared against one another, and their accuracy was assessed through reference data obtained by the Alaskan Fire Service (AFS). The BABD-MTBS product, with the highest spatial resolution (30 m), shows the best overall estimation of BA (81%), however, for the years before 2000 (pre-MODIS era), the BA sensed by this product was only 44.3%, against the 55.5% obtained by the BA-LTDR product with a lower spatial resolution (5 km). In contrast, for the MODIS era (after 2000), BABD-MTBS virtually matches the reference data (98.5%), while the other three time series showed similar results of around 60%. Based on the theoretical limits of their corresponding Pareto boundaries, the lower resolution BA products could be improved, although those based on MODIS data are currently limited by the algorithm’s reliance on the active fire MODIS product, with a 1 km nominal spatial resolution. The large inter-annual variation found in the commission and omission errors in this study suggests that for a fair assessment of the accuracy of any BA product, all available reference data for space and time should be considered and should not be carried out by selective sampling.
Collapse
|
8
|
Li Z, Wen Q, Zhang R. Sources, health effects and control strategies of indoor fine particulate matter (PM 2.5): A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:610-622. [PMID: 28216030 DOI: 10.1016/j.scitotenv.2017.02.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/04/2017] [Accepted: 02/04/2017] [Indexed: 05/21/2023]
Abstract
Indoor air quality is directly influenced by indoor PM2.5. Short-term and long-term exposure of PM2.5 in the micro environment would severely detriment the health of both humans and animals. The researches both at home and abroad dating from 2000 were analyzed and summarized mainly in the following 3 sections: source apportionment, health effects and control methods. Health effects were illustrated in both epidemiology and toxicology. The epidemiology was explicated in morbidity and mortality, the toxicology was illuminated in inflammatory reaction, oxidative stress, genotoxicity, mutagenicity and carcinogenicity. Control methods were showed in two aspects (sources and means of transmission), of which each was resolved by corresponding control strategy. Abundant investigations indicated that comprehensive control strategies were needed for sources decrement and health burden mitigation of indoor PM2.5. Based on the increasingly wide research of indoor PM2.5, the concept of indoors was essentially expanded, and on the basis of the summary of all the aspects mentioned above, both the scope and depth of indoor PM2.5 research were found insufficiently. Meantime, the potential direction of development in indoor PM2.5 research were projected, in hope of contributing to further relevant study of engineers in ambient environment and building environment.
Collapse
Affiliation(s)
- Zhisheng Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, NO. 100 Outer ring Road, Guangzhou, Guangdong, China
| | - Qingmei Wen
- School of Civil and Transportation Engineering, Guangdong University of Technology, NO. 100 Outer ring Road, Guangzhou, Guangdong, China.
| | - Ruilin Zhang
- School of Electro-mechanical Engineering, Guangdong University of Technology, NO. 100 Outer ring Road, Guangzhou, Guangdong, China
| |
Collapse
|