1
|
Petrokas R, Manton M, Kavaliauskas D. Tree regeneration and ontogenetic strategies of northern European hemiboreal forests: transitioning towards closer-to-nature forest management. PeerJ 2024; 12:e17644. [PMID: 39131610 PMCID: PMC11317037 DOI: 10.7717/peerj.17644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/06/2024] [Indexed: 08/13/2024] Open
Abstract
Background Tree ontogeny is the genetic trajectories of regenerative processes in trees, repeating in time and space, including both development and reproduction. Understanding the principles of tree ontogeny is a key priority in emulating natural ecological patterns and processes that fall within the calls for closer-to-nature forest management. By recognizing and respecting the growth and development of individual trees and forest stands, forest managers can implement strategies that align with the inherent dynamics of forest ecosystem. Therefore, this study aims to determine the ontogenetic characteristics of tree regeneration and growth in northern European hemiboreal forests. Methodology We applied a three-step process to review i) the ontogenetic characteristics of forest trees, ii) ontogenetic strategies of trees for stand-forming species, and iii) summarise the review findings of points i and ii to propose a conceptual framework for transitioning towards closer-to-nature management of hemiboreal forest trees. To achieve this, we applied the super-organism approach to forest development as a holistic progression towards the establishment of natural stand forming ecosystems. Results The review showed multiple aspects; first, there are unique growth and development characteristics of individual trees at the pre-generative and generative stages of ontogenesis under full and minimal light conditions. Second, there are four main modes of tree establishment, growth and development related to the light requirements of trees; they were described as ontogenetic strategies of stand-forming tree species: gap colonisers, gap successors, gap fillers and gap competitors. Third, the summary of our analysis of the ontogenetic characteristics of tree regeneration and growth in northern European hemiboreal forests shows that stand-forming species occupy multiple niche positions relative to forest dynamics modes. Conclusions This study demonstrates the importance of understanding tree ontogeny under the pretext of closer-to-nature forest management, and its potential towards formulating sustainable forest management that emulates the natural dynamics of forest structure. We suggest that scientists and foresters can adapt closer-to-nature management strategies, such as assisted natural regeneration of trees, to improve the vitality of tree communities and overall forest health. The presented approach prioritizes ecological integrity and forest resilience, promoting assisted natural regeneration, and fostering adaptability and connectivity among plant populations in hemiboreal tree communities.
Collapse
Affiliation(s)
- Raimundas Petrokas
- Department of Forest Genetics and Tree Breeding, Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Girionys, Kaunas, Lithuania
| | - Michael Manton
- Bioeconomy Research Institute, Vytautas Magnus University, Akademija, Kaunas, Lithuania
| | - Darius Kavaliauskas
- Department of Forest Genetics and Tree Breeding, Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Girionys, Kaunas, Lithuania
- Bioeconomy Research Institute, Vytautas Magnus University, Akademija, Kaunas, Lithuania
| |
Collapse
|
2
|
Petrokas R, Manton M. Adaptive Relationships in Hemi-Boreal Forests: Tree Species Responses to Competition, Stress, and Disturbance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3256. [PMID: 37765418 PMCID: PMC10535793 DOI: 10.3390/plants12183256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
European Union forest policy calls for closer-to-nature forest management, but natural disturbances and forest succession are ecological phenomena that are difficult to characterize and integrate into sustainable forest management practices. Therefore, the aim of this study is to explore the adaptive properties of Lithuania's hemi-boreal forest ecosystems. To accomplish this, we first reviewed (i) the potential natural forest communities, (ii) the successional dynamics, and (iii) adaptive strategies of forest trees, and second, we synthesised the adaptive relationships using these three reviews. The results firstly identified that Lithuania's potential natural forests are broadly divided into two climatically based zonal formations: (i) mesophytic and hygromesophytic coniferous and broadleaved forests and (ii) mesophytic deciduous broadleaved and coniferous-broadleaved forests. Secondly, the review of successional dynamics showed that each tree species can be categorised into various end communities and plant functional groups. Using the differences in tree establishment and phenological development modes we identified four forest dynamic types of tree adaptive strategies: stress-resistant ruderals, competitive stress-sensitive ruderals, ruderal stress-sensitive competitors, and stress-resistant competitors. Such functional redundancy leads to a variety of tree responses to competition, stress, and disturbance, which reduces the risk of loss of forest ecosystem functioning. Finally, the synthesised review on the adaptive relationships of each forest tree community shows both the niche position of each hemi-boreal forest tree species and how they should be managed in the organization of plant communities. We believe that this research can serve as a guide for future relevant research and the development of appropriate methods for sustainable forest management.
Collapse
Affiliation(s)
- Raimundas Petrokas
- Department of Forest Genetics and Tree Breeding, Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų g. 1, LT-53101 Girionys, Lithuania
| | - Michael Manton
- Bioeconomy Research Institute, Vytautas Magnus University, Studentų g. 13, LT-53362 Akademija, Lithuania
| |
Collapse
|
3
|
Praeg N, Illmer P. Microbial community composition in the rhizosphere of Larix decidua under different light regimes with additional focus on methane cycling microorganisms. Sci Rep 2020; 10:22324. [PMID: 33339837 PMCID: PMC7749151 DOI: 10.1038/s41598-020-79143-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Microbial community and diversity in the rhizosphere is strongly influenced by biotic and/or abiotic factors, like root exudates, nutrient availability, edaphon and climate. Here we report on the microbial diversity within the rhizosphere of Larix decidua, a dominant tree species in the Alps, as compared with the microbiome within the surrounding soil. We describe how increased light intensity influenced the rhizobiome and put emphasize on methane cycling microorganisms. Microbial taxa were classified into 26 bacterial, 4 archaeal and 6 fungal phyla revealing significant differences between bulk and rhizosphere soils. The dominant prokaryotic phyla were Proteobacteria, Acidobacteria, Actinobacteria (both, rhizosphere and bulk soil) and Bacteroidetes (rhizosphere soil only) and dominant fungal phyla in both fractions included Ascomycota and Basidiomycota. The rhizosphere community was indicated by Suillus sp., plant growth-promoting bacteria and Candidatus Saccharibacteria. Predicted genes in membrane transport and carbohydrate metabolism were significantly more abundant in rhizosphere soils while genes connected with energy metabolisms and cell motility increased in bulk soils. Dominant methanotrophic microorganisms were Upland Soil Cluster (USC) α methanotrophs, Methylogaea spp. and Methylosinus spp., while most methanogens belonged to Methanomassiliicoccales. The overall abundance of methanotrophs distinctly increased in the rhizosphere but to a very different species-specific extent. The increased light intensity only led to minor changes in the rhizobiome, nevertheless a couple of indicator species (e.g. Pseudomonas sp.) for intensified light conditions were established.
Collapse
Affiliation(s)
- Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, 6020, Innsbruck, Austria.
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, 6020, Innsbruck, Austria
| |
Collapse
|
4
|
Yue J, Shi D, Zhang L, Zhang Z, Fu Z, Ren Q, Zhang J. The photo-inhibition of camphor leaves ( Cinnamomum camphora L.) by NaCl stress based on physiological, chloroplast structure and comparative proteomic analysis. PeerJ 2020; 8:e9443. [PMID: 32974090 PMCID: PMC7486828 DOI: 10.7717/peerj.9443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/08/2020] [Indexed: 11/29/2022] Open
Abstract
Background The distribution and use of camphor (Cinnamomum camphora L.) trees are constrained by increasing soil salinity in south-eastern China along the Yangtze River. However, the response mechanism of this species to salinity, especially in team of photosynthesis, are unknown. Methods Here, we analysed themorphological, physiological, ultrastructural, and proteomic traits of camphor seedlings under NaCl (103.45 mM) treatment in pot experiments for 80 days. Results The growth was limited because of photosynthetic inhibition, with the most significant disturbance occurring within 50 days. Salinity caused severe reductions in the leaf photosynthetic rate (An), stomatal conductance (gs), maximal chlorophyll fluorescence (Fm), maximum quantum yield of PSII (Fv/Fm), non-photochemical quenching (NPQ), relative quantum efficiency of PSII photochemistry (ΦPSII), photochemical quenching coefficient (qP) and photo-pigment contents (chlorophyll a (Cha), chlorophyll b (Chb), total chlorophyll (Chl)); weakened the antioxidant effects, including those of malondialdehyde (MDA), superoxide dismutase (SOD) and peroxidase (POD); and injured chloroplasts. The physiologicalresults indicated that the main reason for photo-inhibition was oxidative factors induced by NaCl. The proteomic results based on isobaric tags for relative and absolute quantitation (iTRAQ) further confirmedthat photosynthesis was the most significant disrupted process by salinity (P < 0.01) and there were 30 downregulated differentially expression proteins (DEPs) and one upregulated DEP related to restraint of the photosynthetic system, which affected photosystem I, photosystem II, the Cytochrome b6/f complex, ATP synthase and the light-harvesting chlorophyll protein complex. In addition, 57 DEPs were related to photo-inhibition by redox effect and 6 downregulated DEPs, including O2 evolving complex 33kD family protein (gi—224094610) and five other predicted proteins (gi—743921083, gi—743840443, gi—743885735, gi—743810316 and gi—743881832) were directly affected. This study provides new proteomic information and explains the possible mechanisms of photo-inhibition caused by salinity on C. camphor.
Collapse
Affiliation(s)
- Jiammin Yue
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province & Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China.,Key Laboratory of Land Degradation and Ecosystem Restoration & Key Laboratory of Rehabilitation and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yingchuan, Ningxia, China.,Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dawei Shi
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province & Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Liang Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province & Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Zihan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province & Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Zhiyuan Fu
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province & Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Qiong Ren
- Jiangxi Academy of Forestry, Nanchang, China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province & Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Praeg N, Schwinghammer L, Illmer P. Larix decidua and additional light affect the methane balance of forest soil and the abundance of methanogenic and methanotrophic microorganisms. FEMS Microbiol Lett 2020; 366:5695738. [PMID: 31899513 DOI: 10.1093/femsle/fnz259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/31/2019] [Indexed: 11/13/2022] Open
Abstract
Due to the activity of methane-oxidizing bacteria, forest soils are usually net sinks for the greenhouse gas methane (CH4). Despite several hints that CH4 balances might be influenced by vegetation, there are only few investigations dealing with this connection. Therefore, we studied this soil-plant-microbe interaction by using mesocosm experiments with forest soil and Larix decidua, a common coniferous tree species within the Alps. Gas measurements showed that the presence of L. decidua significantly reduced CH4 oxidation of the forest soil by ∼10% (-0.95 µmol m-2 h-1 for soil vs -0.85 µmol m-2 h-1 for soil plus L. decidua) leading to an increased net CH4 balance. Increased light intensity was used to intensify the influence of the plant on the soil's CH4 balance. The increase in light intensity strengthened the effect of the plant and led to a greater reduction of CH4 oxidation. Besides, we examined the impact of L. decidua and light on the abundance of methanogens and methanotrophs in the rhizosphere as compared with bulk soil. The abundance of both methane-oxidizing bacteria and methanogenic archaea was significantly increased in the rhizosphere compared with bulk soil but no significant response of methanogens and methanotrophs upon light exposure was established.
Collapse
Affiliation(s)
- Nadine Praeg
- Universität Innsbruck, Department of Microbiology, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| | - Larissa Schwinghammer
- Universität Innsbruck, Department of Microbiology, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| | - Paul Illmer
- Universität Innsbruck, Department of Microbiology, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| |
Collapse
|
6
|
Bilska K, Wojciechowska N, Alipour S, Kalemba EM. Ascorbic Acid-The Little-Known Antioxidant in Woody Plants. Antioxidants (Basel) 2019; 8:E645. [PMID: 31847411 PMCID: PMC6943661 DOI: 10.3390/antiox8120645] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS) are constantly produced by metabolically active plant cells. The concentration of ROS may determine their role, e.g., they may participate in signal transduction or cause oxidative damage to various cellular components. To ensure cellular homeostasis and minimize the negative effects of excess ROS, plant cells have evolved a complex antioxidant system, which includes ascorbic acid (AsA). AsA is a multifunctional metabolite with strong reducing properties that allows the neutralization of ROS and the reduction of molecules oxidized by ROS in cooperation with glutathione in the Foyer-Halliwell-Asada cycle. Antioxidant enzymes involved in AsA oxidation and reduction switches evolved uniquely in plants. Most experiments concerning the role of AsA have been performed on herbaceous plants. In addition to extending our understanding of this role in additional taxa, fundamental knowledge of the complex life cycle stages of woody plants, including their development and response to environmental factors, will enhance their breeding and amend their protection. Thus, the role of AsA in woody plants compared to that in nonwoody plants is the focus of this paper. The role of AsA in woody plants has been studied for nearly 20 years. Studies have demonstrated that AsA is important for the growth and development of woody plants. Substantial changes in AsA levels, as well as reduction and oxidation switches, have been reported in various physiological processes and transitions described mainly in leaves, fruits, buds, and seeds. Evidently, AsA exhibits a dual role in the photoprotection of the photosynthetic apparatus in woody plants, which are the most important scavengers of ozone. AsA is associated with proper seed production and, thus, woody plant reproduction. Similarly, an important function of AsA is described under drought, salinity, temperature, light stress, and biotic stress. This report emphasizes the involvement of AsA in the ecological advantages, such as nutrition recycling due to leaf senescence, of trees and shrubs compared to nonwoody plants.
Collapse
Affiliation(s)
- Karolina Bilska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (K.B.); (N.W.); (S.A.)
| | - Natalia Wojciechowska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (K.B.); (N.W.); (S.A.)
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Shirin Alipour
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (K.B.); (N.W.); (S.A.)
- Department of Forestry, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
| | - Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (K.B.); (N.W.); (S.A.)
| |
Collapse
|
7
|
Responses to Drought in Seedlings of European Larch (Larix decidua Mill.) from Several Carpathian Provenances. FORESTS 2019. [DOI: 10.3390/f10060511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
European larch (Larix decidua Mill.) has been reported either as more tolerant or as more sensitive to drought than conifers with perennial leaves. Previous studies have revealed that Carpathian populations of European larch display a high genetic variability. A comparative study of the responses of these populations to drought stress at the seedling stage might allow the identification of drought tolerant genotypes and reliable drought stress biomarkers, which could be eventually used for the early detection of drought effects in larch, not only under control greenhouse conditions, but also in their natural stands. Growth responses were analyzed in larch seedlings from six Romanian Carpathian populations, submitted to one month of mild drought stress under controlled conditions. Levels of photosynthetic pigments (chlorophylls a and b, and carotenoids), osmolytes (proline and total soluble sugars), monovalent cations (Na+ and K+), and malondialdehyde (MDA) and non-enzymatic antioxidants (total phenolics and flavonoids) were compared with control treatments and between populations. Growth and the pattern of the biochemical responses were very similar in the six populations. Drought stress lead to stem length decrease in all population, whereas reduction of fresh weight of needles was significant only in one population (BVVC), and reduction of water content of needles in two populations (BVVC and GuHo). The optimal biochemical traits for an early detection of drought symptoms in this species is the increase—in most populations—of total soluble sugars, MDA, and total phenolic compounds, whereas K+ reduction was significant in all populations. Photosynthetic pigments remained unchanged, except for the Anin population where they were reduced under stress. Multivariate principal component and hierarchical clustering analyses confirmed the impact of drought in the growth and physiology of European larch, and revealed that the humidity of the substrate was positively correlated with the growth parameters and the levels of K+ in needles, and negatively correlated with the levels of MDA, total soluble sugars, total phenolic compounds, and flavonoids in needles.
Collapse
|
8
|
Ecophysiological Responses of Carpinus turczaninowii L. to Various Salinity Treatments. FORESTS 2019. [DOI: 10.3390/f10020096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Carpinus turczaninowii L., commonly known as hornbeam, has significant economic and ornamental importance and is largely distributed in the northern hemisphere, including parts of China and Korea, with high adaptation to harsh conditions in very unfertile soils. In this study, the ecophysiological responses of C. turczaninowii seedlings to various salinity stress treatments (NaCl: 0, 17, 34, 51, 68, and 85 mM) were studied for 42 days by determining stress-induced changes in growth parameters and biochemical markers. Salinity stress affected the values of all the examined parameters, both morphological and physiological, and caused the inhibition of plant growth, the degradation of photosynthetic capacity and stomatal behavior, a decrease in the photosynthetic pigments contents and relative water content, an increase in the Malondialdehyde (MDA) content and relative electrolytic conductivity, and the accumulation of Na+ and Cl− content. The presence of relatively high concentrations of organic osmolytes, the activation of antioxidant enzymes, and the ionic transport capacity from the root to shoots may represent a constitutive mechanism of defence against stress in C. turczaninowii seedlings. Our results suggest that C. turczaninowii can tolerate salinity at low and moderate concentrations (17–51 mM) under nursery conditions and can be widely used in roadsides, gardens, parks, and other urban areas.
Collapse
|
9
|
The Positive Effect of Different 24-epiBL Pretreatments on Salinity Tolerance in Robinia pseudoacacia L. Seedlings. FORESTS 2018. [DOI: 10.3390/f10010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As a brassinosteroid (BR), 24-epibrassinolide (24-epiBL) has been widely used to enhance the resistance of plants to multiple stresses, including salinity. Black locust (Robinia pseudoacacia L.) is a common species in degraded soils. In the current study, plants were pretreated with three levels of 24-epiBL (0.21, 0.62, or 1.04 µM) by either soaking seeds during the germination phase (Sew), foliar spraying (Spw), or root dipping (Diw) at the age of 6 months. The plants were exposed to salt stress (100 and 200 mM NaCl) via automatic drip-feeding (water content ~40%) for 45 days after each treatment. Increased salinity resulted in a decrease in net photosynthesis rate (Pn), stomatal conductance (Gs), intercellular:ambient CO2 concentration ratio (Ci/Ca), water-use efficiency (WUEi), and maximum quantum yield of photosystem II (PSII) (Fv/Fm). Non-photochemical quenching (NPQ) and thermal dissipation (Hd) were elevated under stress, which accompanied the reduction in the membrane steady index (MSI), water content (RWC), and pigment concentration (Chl a, Chl b, and Chl). Indicators of oxidative stress (i.e., malondialdehyde (MDA) and antioxidant enzymes (peroxidase (POD) and superoxide dismutase (SOD)) in leaves and Na+ content in chloroplasts increased accompanied by a reduction in chloroplastid K+ and Ca2+. At 200 mM NaCl, the chloroplast and thylakoid ultrastructures were severely disrupted. Exogenous 24-epiBL improved MSI, RWC, K+, and Ca2+ content, reduced Na+ levels, maintained chloroplast and thylakoid membrane structures, and enhanced the antioxidant ability in leaves. 24-epiBL also substantially alleviated stress-induced limitations of photosynthetic ability, reflected by elevated chlorophyll fluorescence, pigment levels, and Pn. The positive effects of alleviating salt stress in R. pseudoacacia seedlings in terms of treatment application was Diw > Sew > Spw, and the most positive impacts were seen with 1.04 µM 24-epiBL. These results provide diverse choice for 24-epiBL usage to defend against NaCl stress of a plant.
Collapse
|