1
|
Ndlovu S, Suinyuy TN, Pérez-Fernández MA, Magadlela A. Encephalartos natalensis, Their Nutrient-Cycling Microbes and Enzymes: A Story of Successful Trade-Offs. PLANTS (BASEL, SWITZERLAND) 2023; 12:1034. [PMID: 36903894 PMCID: PMC10005579 DOI: 10.3390/plants12051034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Encephalartos spp. establish symbioses with nitrogen (N)-fixing bacteria that contribute to soil nutrition and improve plant growth. Despite the Encephalartos mutualistic symbioses with N-fixing bacteria, the identity of other bacteria and their contribution to soil fertility and ecosystem functioning is not well understood. Due to Encephalartos spp. being threatened in the wild, this limited information presents a challenge in developing comprehensive conservation and management strategies for these cycad species. Therefore, this study identified the nutrient-cycling bacteria in Encephalartos natalensis coralloid roots, rhizosphere, and non-rhizosphere soils. Additionally, the soil characteristics and soil enzyme activities of the rhizosphere and non-rhizosphere soils were assayed. The coralloid roots, rhizosphere, and non-rhizosphere soils of E. natalensis were collected from a population of >500 E. natalensis in a disturbed savanna woodland at Edendale in KwaZulu-Natal (South Africa) for nutrient analysis, bacterial identification, and enzyme activity assays. Nutrient-cycling bacteria such as Lysinibacillus xylanilyticus; Paraburkholderia sabiae, and Novosphingobium barchaimii were identified in the coralloid roots, rhizosphere, and non-rhizosphere soils of E. natalensis. Phosphorus (P) cycling (alkaline and acid phosphatase) and N cycling (β-(D)-Glucosaminidase and nitrate reductase) enzyme activities showed a positive correlation with soil extractable P and total N concentrations in the rhizosphere and non-rhizosphere soils of E. natalensis. The positive correlation between soil enzymes and soil nutrients demonstrates that the identified nutrient-cycling bacteria in E. natalensis coralloid roots, rhizosphere, and non-rhizosphere soils and associated enzymes assayed may contribute to soil nutrient bioavailability of E. natalensis plants growing in acidic and nutrient-poor savanna woodland ecosystems.
Collapse
Affiliation(s)
- Siphelele Ndlovu
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Terence N. Suinyuy
- School of Biology and Environmental Sciences, University of Mpumalanga (Mbombela Campus), Private Bag X11283, Mbombela 1200, South Africa
| | - María A. Pérez-Fernández
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain
| | - Anathi Magadlela
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
2
|
Leaf Elemental Concentrations, Stoichiometry, and Resorption in Guam’s Coastal Karst Forests. DIVERSITY 2021. [DOI: 10.3390/d13110545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Greater knowledge concerning the interspecific diversity of the plant leaf ionome is required to effectively understand the spatiotemporal dynamics of biogeochemistry, but Micronesia has been ignored in this literature. The objectives of this study were to quantify the leaf ionome, resorption efficiency, and stoichiometry of leaves from 25 plant species representing Guam’s coastal karst forests. Carbon and nitrogen were quantified by dry combustion, and other minerals and metals were quantified by spectrometry. Nitrogen and calcium concentrations in Guam’s green leaves exceeded the published global means, but manganese and copper concentrations were less than the global means. The remainder of the elements were within the expected ranges. Nutrient resorption rates exhibited a decreasing order of potassium > phosphorus > nitrogen > zinc > copper. The term “accretion efficiency” is introduced to describe the accumulation of an element throughout leaf aging and senescence, and calcium and iron exhibited substantial accretion efficiency in this study. Stoichiometry relations indicated that Guam’s karst forest is most limited by phosphorus and then secondarily limited by nitrogen, although several individual taxa exhibited co-limitation by potassium. Five of the species are officially listed on extinction threat lists. Of these, the Malvaceae tree Heriteria longipetiolata exhibited leaf traits depicting the most recalcitrant litter characteristics, and the Fabaceae tree Serianthes nelsonii exhibited leaf traits depicting the most labile litter characteristics. The contributions of these two tree species to spatiotemporal diversity in biogeochemistry appear to be profound, indicating species recovery efforts are of paramount importance for maintaining ecosystem function and soil heterotroph biodiversity in northern Guam.
Collapse
|
3
|
Abstract
The literature covering the biology, invasion chronology, host plant responses, and control efforts of the armored scale Aulacaspis yasumatsui Takagi (Hempitera: Diaspididae) is reviewed. The small size of this cycad pest and complex surface morphology of the host cycad organs combine to make visual detection of every cryptic infestation difficult or impossible to achieve. The international movement of Cycas revoluta Thunb. nursery plants and the presence of C. revoluta nursery industries in so many countries have enabled this pest to wreak havoc on the international cycad horticulture trade over the last 25 years. The short pre-oviposition period and considerable female fecundity lead to rapid population expansion on the plants initially infested in newly invaded regions. A depletion of non-structural carbohydrates accompanies long-term infestations and precedes plant death. Enemy escape within the invasive range allows the scale population growth to remain unchecked until anthropogenic efforts establish non-native biological control.
Collapse
|
4
|
Marler TE, Griffith MP, Krishnapillai MV. Height increment of Cycas micronesica informs conservation decisions. PLANT SIGNALING & BEHAVIOR 2020; 15:1830237. [PMID: 33073692 PMCID: PMC7671096 DOI: 10.1080/15592324.2020.1830237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Growth dynamics of pachycaulous stems of arborescent cycad plants are not well understood, and most observations have been made in cultivated garden plants. We studied Cycas micronesica plants in Guam, Tinian, and Yap to understand the influences of geography, plant size, sex, and herbivory on stem growth. We also determined the changes in demography of Guam's population after 15 years of damage by non-native insect herbivores. The height increment (HI) was similar for plants within the height range from 100 cm to more than 600 cm, so the relative growth rate declined with height. Female tree HI was 68% of male tree HI, and Yap tree HI was 87% of Guam tree HI. Chronic herbivory by non-native insect herbivores caused a mean 44% decline in HI. Plants in managed gardens grew more rapidly than plants in a wild habitat. The HI was used to estimate that Guam has experienced a complete loss of ≈70 y of demographic depth resulting from the selective mortality of small plants since 2005. When future conservation interventions successfully mitigate the ubiquitous biological threats, our HI may be useful for empirically quantifying recovery of plant health.
Collapse
Affiliation(s)
- Thomas E. Marler
- Western Pacific Tropical Research Center, University of Guam, Mangilao, Guam, USA
- CONTACT Thomas E. Marler Western Pacific Tropical Research Center, University of Guam, Mangilao, Guam96923, USA
| | | | - Murukesan V. Krishnapillai
- Cooperative Research and Extension, College of Micronesia-FSM, Yap Campus, Yap, Federated States of Micronesia
| |
Collapse
|
5
|
Abstract
The literature containing which chemical elements are found in cycad leaves was reviewed to determine the range in values of concentrations reported for essential and beneficial elements. We found 46 of the 358 described cycad species had at least one element reported to date. The only genus that was missing from the data was Microcycas. Many of the species reports contained concentrations of one to several macronutrients and no other elements. The cycad leaves contained greater nitrogen and phosphorus concentrations than the reported means for plants throughout the world. Magnesium was identified as the macronutrient that has been least studied. Only 14 of the species were represented by data from in situ locations, with most of the data obtained from managed plants in botanic gardens. Leaf element concentrations were influenced by biotic factors such as plant size, leaf age, and leaflet position on the rachis. Leaf element concentrations were influenced by environmental factors such as incident light and soil nutrient concentrations within the root zone. These influential factors were missing from many of the reports, rendering the results ambiguous and comparisons among studies difficult. Future research should include the addition of more taxa, more in situ locations, the influence of season, and the influence of herbivory to more fully understand leaf nutrition for cycads.
Collapse
|
6
|
Marler TE, Lindstrom A. Leaf nutrients of two Cycas L. species contrast among in situ and ex situ locations. JOURNAL OF THREATENED TAXA 2020. [DOI: 10.11609/jott.6205.12.13.16831-16839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
An understanding of leaf nutrient relations is required for tree conservation and horticulture success. The study of cycad leaf nutrient dynamics has expanded in recent years, but direct comparisons among reports remains equivocal due to varying sampling protocols. We used Cycas micronesica K.D. Hill and Cycas nongnoochiae K.D. Hill trees to determine the influence on leaf nutrient concentrations of in situ versus ex situ locations and orientation of leaves within the tree canopy. Nitrogen, phosphorus, and potassium concentrations of leaves from ex situ plants exceeded those from in situ plants, and the differences were not explained by soil nutrient differences. Calcium concentrations of leaves varied among the site pairs, with differences primarily explained by soil calcium. Magnesium concentrations of leaves were not different among all location pairs even though soil magnesium concentrations varied among the sites more than any of the other elements. Differences in leaf macronutrient concentrations among four C. micronesica provenances were minimal when grown in a common garden. Lateral orientation of leaves did not influence any of the essential elements for either of the species. These findings indicate that the lateral orientation of cycad leaves does not influence leaf nutrient concentrations, leaf nutrient relations of cycad plants in managed ex situ settings do not align with leaf nutrient relations in habitat, and these differences are not explained by soil nutrition for most elements. We suggest that leaf nutrient concentrations should be determined in all niche habitats within the geographic range of a cycad species in order to fully understand the leaf physiology of each species.
Collapse
|
7
|
Perennial Trees Associating with Nitrogen-Fixing Symbionts Differ in Leaf After-Life Nitrogen and Carbon Release. NITROGEN 2020. [DOI: 10.3390/nitrogen1020010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plants that enter symbiotic relationships with nitrogen (N)-fixing microbes contribute some of their N to the community through leaf litter decomposition and mineralization processes. The speed of these processes varies greatly among tree species. Mesocosm methods were used to determine the speed of N and carbon (C) release from Cycas micronesica, Intsia bijuga, and Serianthes nelsonii leaf litter. Microcosm methods were used to determine soil respiration traits in soils containing the leaf litter. The speed of leaf litter N and C release during decomposition occurred in the order C. micronesica < I. bijuga < S. nelsonii. Soil carbon dioxide efflux was increased by adding leaf litter to incubation soils, and the increase was greatest for S. nelsonii and least for C. micronesica litter. Ammonium, nitrate, total N, organic C, and total C were increased by adding litter to incubation soils, and the differences among the species converged with incubation duration. The rate of increases in available N and decreases in organic C were greatest for S. nelsonii and least for C. micronesica litter. These findings indicate that S. nelsonii litter released N and C rapidly, C. micronesica litter released N and C slowly, and the leaf economic spectrum accurately predicted the differences.
Collapse
|
8
|
Abstract
The influences of Cycas micronesica and Zamia integrifolia plants on soil chemistry were determined in Tinian and Florida in order to more fully understand how cycad plants affect the environments in which they grow. The introduction of C. micronesica plants into a karst habitat generated decreases in soil phosphorus after five years and increases in soil nitrogen after six years. The carbon:nitrogen:phosphorus stoichiometry beneath the cycad plants significantly diverged from those of the adjacent native forests with Pisonia grandis, Psychotria mariana, Aglaia mariannensis, Cynometra ramiflora, and Ficus sp. cover after five years. Mineralization traits were determined beneath nine-year-old C. micronesica plants and revealed the plants greatly increased net nitrification and decreased net ammonification when compared to the native forest soils with Bursera simaruba, Pinus elliottii, and Quercus virginiana cover. These flux changes increased the total available nitrogen and percent available nitrogen in the soils beneath the cycad plants. The substrates of two soil series exhibited increased carbon and nitrogen concentrations beneath Z. integrifolia plants when compared with soils away from the cycad plants. No other mineral or metal was influenced by proximity to the Z. integrifolia plants. These gymnosperms exhibit distinct interactions with their subtending soils, and some of these traits improve ecosystems by increasing recalcitrant carbon and nitrogen and increasing spatial heterogeneity of soil chemistry.
Collapse
|
9
|
Marler TE, Krishnapillai MV. Vertical Strata and Stem Carbon Dioxide Efflux in Cycas Trees. PLANTS (BASEL, SWITZERLAND) 2020; 9:E230. [PMID: 32054006 PMCID: PMC7076351 DOI: 10.3390/plants9020230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/02/2020] [Accepted: 02/09/2020] [Indexed: 11/16/2022]
Abstract
Stem respiration is influenced by the vertical location of tree stems, but the influence of vertical location on stem respiration in a representative cycad species has not been determined. We quantified the influence of vertical strata on stem carbon dioxide efflux (Es) for six arborescent Cycas L. species to characterize this component of stem respiration and ecosystem carbon cycling. The influence of strata on Es was remarkably consistent among the species, with a stable baseline flux characterizing the full mid-strata of the pachycaulous stems and an increase in Es at the lowest and highest strata. The mid-strata flux ranged from 1.8 µmol·m-2·s-1 for Cycas micronesica K.D. Hill to 3.5 µmol·m-2·s-1 for Cycas revoluta Thunb. For all species, Es increased about 30% at the lowest stratum and about 80% at the highest stratum. A significant quadratic model adequately described the Es patterns for all six species. The increase of Es at the lowest stratum was consistent with the influence of root-respired carbon dioxide entering the stem via sap flow, then contributing to Es via radial conductance to the stem surface. The substantial increase in Es at the highest stratum is likely a result of the growth and maintenance respiration of the massive cycad primary thickening meristem that constructs the unique pachycaulous cycad stem.
Collapse
Affiliation(s)
- Thomas E. Marler
- College of Natural and Applied Sciences, University of Guam, Mangilao, Guam 96923, USA
| | | |
Collapse
|
10
|
Incident Light and Leaf Age Influence Leaflet Element Concentrations of Cycas micronesica Trees. HORTICULTURAE 2019. [DOI: 10.3390/horticulturae5030058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The need for improved knowledge on conservation and management of cycad species has generated recent interest in compiling a database on leaf nutrient concentrations. However, the sampling protocols have not been consistent among reports and the influences of some plant and habitat traits on the plasticity of cycad leaf nutrient concentrations has not been adequately determined. We used Cycas micronesica K.D. Hill trees to determine the role of incident light level and leaf age on leaflet content of 11 essential elements. Shade leaves exhibited increased mass-based concentration for nitrogen, phosphorus, and potassium above that of sun leaves. Shade leaves exhibited decreased area-based concentration for all of the macro- and micronutrients below that of sun leaves. Mass-based concentration of nitrogen, phosphorus, and potassium decreased with leaf age, and that of calcium, magnesium, iron, manganese, and zinc increased with leaf age. These findings indicate the relative leaf age and the amount of shade or incident light at the leaf level must be recorded and reported for leaf tissue studies in cycads in order to reduce ambiguity and ensure repeatability.
Collapse
|
11
|
Marler TE. Late successional tree species in Guam create biogeochemical niches. Commun Integr Biol 2019; 12:86-90. [PMID: 31205581 PMCID: PMC6546135 DOI: 10.1080/19420889.2019.1619437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 11/25/2022] Open
Abstract
The soils beneath and surrounding mature Artocarpus mariannensis, Elaeocarpus joga, and Serianthes nelsonii trees were studied in northern Guam limestone forests to determine the role of these trees in maintaining spatial heterogeneity of biogeochemistry. The soils beneath S. nelsonii were nutrient-enriched compared to soils away from S. nelsonii. The soils beneath A. mariannensis were depauperate for some nutrients or were not different from the soils away from A. mariannensis for other nutrients. The soils beneath E. joga exhibited increases in some nutrients such as nitrogen, carbon, and phosphorus, but decreases in other nutrients such as potassium and calcium when compared to the soils away from E. joga trees. These three tree species influenced spatial heterogeneity in soil nutrient status in the order A. mariannensis < E. joga < S. nelsonii and their presence added greatly to surface soil heterogeneity. Iron, manganese, and pH exhibited the least variation within the paired sites. Calcium, magnesium, potassium, and zinc exhibited the greatest variation among the paired sites. These findings indicate that continuing loss of these trees from Guam’s forests will diminish the associated biogeochemical spatial heterogeneity.
Collapse
Affiliation(s)
- Thomas E Marler
- College of Natural and Applied Sciences, University of Guam, Mangilao, Guam, USA
| |
Collapse
|
12
|
Distribution of Elements along the Rachis of Cycas micronesica Leaves: A Cautionary Note for Sampling Design. HORTICULTURAE 2019. [DOI: 10.3390/horticulturae5020033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cycas micronesica K.D. Hill trees on the island of Yap were used to determine the influence of position along the leaf rachis on macro- and micro-nutrient concentrations and how leaf age affected the results. The outcomes revealed improvements to sampling protocols for future cycad leaf research. The concentration of every element except carbon and copper was influenced by leaflet position along the rachis. Most elements exhibited similar patterns for the oldest and youngest leaves on a tree, but the influence of position along the rachis for nitrogen, phosphorus, calcium, zinc, and boron was highly contrasting for old versus young leaves. The elements with the greatest variability along the rachis were potassium, phosphorus, manganese, and zinc, with the difference in basal and terminal leaflets as great as four-fold. Sampling leaflets at one position on a cycad leaf may generate inaccurate elemental concentration results for most essential nutrients other than carbon and copper. We have added position of sampled leaflets within leaves as a mandatory component of what is recorded and reported for future cycad leaf tissue analyses. Leaflets that span the full length of the rachis should be included in cycad leaf samples that are collected for tissue analysis.
Collapse
|
13
|
Marler TE. Tree conservation can be constrained by agents from conservation permitting and funding agencies. Commun Integr Biol 2019; 12:133-143. [PMID: 31528243 PMCID: PMC6735646 DOI: 10.1080/19420889.2019.1654348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 11/15/2022] Open
Abstract
Recent conservation actions for Serianthes nelsonii Merr. and Cycas micronesica K.D. Hill in the Mariana Islands have illuminated some negative consequences associated with ill-informed agents representing permitting and funding agencies. Several cases from the islands of Guam and Tinian are discussed as ineffective conservation examples, and these are countered with two examples of successful conservation approaches. When biologists that act as points of contact for federal permitting and funding agencies do not possess education, knowledge, and experience that is germane to federally listed species, sound science may be marginalized from the conservation agenda. When rapid turnover of federal conservation agents introduces dysfunction, discontinuities in collaborations may thwart success. When lapses in conservation contracts are allowed, short-term extemporary contracting approaches are utilized, and conservation practitioners that lack the ability to include an experimental approach to conservation actions are employed, the co-production of new knowledge to enable decision support tools for future decision-makers may be hindered.
Collapse
Affiliation(s)
- Thomas E. Marler
- College of Natural and Applied Sciences, University of Guam, Mangilao, Guam, USA
| |
Collapse
|
14
|
Marler TE, Krishnapillai MV. Does Plant Size Influence Leaf Elements in an Arborescent Cycad? BIOLOGY 2018; 7:E51. [PMID: 30551676 PMCID: PMC6315973 DOI: 10.3390/biology7040051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022]
Abstract
Plant size influences the leaf nutrient relations of many species, but no cycad species has been studied in this regard. We used the arborescent Cycas micronesica K.D. Hill to quantify leaf nutrient concentrations of trees with stems up to 5.5-m in height to determine if height influenced leaf nutrients. Green leaves were sampled in a karst, alkaline habitat in Rota and a schist, acid habitat in Yap. Additionally, senesced leaves were collected from the trees in Yap. Minerals and metals were quantified in the leaf samples and regressed onto stem height. Green leaf nitrogen, calcium, manganese, and iron decreased linearly with increased stem height. Senesced leaf carbon, iron, and copper decreased and senesced leaf nitrogen increased with stem height. Nitrogen resorption efficiency decreased with stem height. Phosphorus and potassium resorption efficiencies were not influenced by plant size, but were greater than expected based on available published information. The results indicate leaf nutrient concentrations of this cycad species are directly influenced by plant size, and illuminate the need for adding more cycad species to this research agenda. Plant size should be measured and reported in all cycad reports that include measurements of leaf behavior.
Collapse
Affiliation(s)
- Thomas E Marler
- College of Natural and Applied Sciences, University of Guam, Mangilao, Guam 96923, USA.
| | | |
Collapse
|
15
|
Marler TE, Lindström AJ. Inserting cycads into global nutrient relations data sets. PLANT SIGNALING & BEHAVIOR 2018; 13:e1547578. [PMID: 30444181 PMCID: PMC6296355 DOI: 10.1080/15592324.2018.1547578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/07/2018] [Indexed: 05/27/2023]
Abstract
Global research agendas on plant nutrient relations attempt to illuminate biotic and abiotic factors that mediate nutrient relations. We contend that cycad species are not adequately represented in these global agendas. Little is known about how various cycad traits such as phylogenetics, growth form, latitudinal range, or ecological niche influence concentration, stoichiometry, and resorption dynamics of leaf nutrients. The addition of cycad species data to the global research dataset will address a critical knowledge gap and benefit global research needs to improve our systemic understanding of biotic and abiotic influences on plant nutrition.
Collapse
Affiliation(s)
- Thomas E. Marler
- Western Pacific Tropical Research Center, University of Guam, Mangilao, Guam, USA
| | - Anders J. Lindström
- Plant Collections Department, Nong Nooch Tropical Botanical Garden, Sattahip, Thailand
| |
Collapse
|