1
|
Hinojosa-Avila CR, Chedraui-Urrea JJT, Estarrón-Espinosa M, Gradilla-Hernández MS, García-Cayuela T. Chemical profiling and probiotic viability assessment in Gueuze-style beer: Fermentation dynamics, metabolite and sensory characterization, and in vitro digestion resistance. Food Chem 2025; 462:140916. [PMID: 39216372 DOI: 10.1016/j.foodchem.2024.140916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Probiotic viability, metabolite concentrations, physicochemical parameters, and volatile compounds were characterized in Gueuze beers formulated with probiotic lactic acid bacteria (LAB) and yeast. Additionally, the sensory profile of the beers and the resistance of the probiotics to digestion were determined. The use of 2 International Bitterness Units resulted in high concentrations of probiotic LAB but a decline in probiotic yeast as pH decreased. Secondary fermentation led to the consumption of maltose, citric acid, and malic acid, and the production of lactic and propionic acids. Carbonation and storage at 4 °C had minimal impact on probiotic viability. The addition of probiotic LAB resulted in a distinct aroma profile with improved sensory characteristics. Our results demonstrate that sour beers produced with probiotic LAB and a probiotic yeast, and fermented using a two-step fermentation process, exhibited optimal physicochemical parameters, discriminant volatile compound profiles, promising sensory characteristics, and high probiotic concentrations after digestion.
Collapse
Affiliation(s)
- Carlo R Hinojosa-Avila
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Jorge J T Chedraui-Urrea
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Prol. Canal de Miramontes, Coapa, San Bartolo el Chico, Tlalpan, 14380 Ciudad de México, Mexico
| | - Mirna Estarrón-Espinosa
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, el Bajío del Arenal, Zapopan 45019, Jalisco, Mexico
| | | | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| |
Collapse
|
2
|
Choque-Quispe Y, Choque-Quispe D, Ligarda-Samanez CA, Solano-Reynoso AM, Froehner S, Ramos-Pacheco BS, Carhuarupay-Molleda YF, Sumarriva-Bustinza LA. A High Andean Hydrocolloid Extracted by Microatomization: Preliminary Optimization in Aqueous Stability. Polymers (Basel) 2024; 16:1777. [PMID: 39000633 PMCID: PMC11244426 DOI: 10.3390/polym16131777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Aqueous suspensions rely on electrostatic interactions among suspended solids, posing a significant challenge to maintaining stability during storage, particularly in the food and pharmaceutical industries, where synthetic stabilizers are commonly employed. However, there is a growing interest in exploring new materials derived from natural and environmentally friendly sources. This study aimed to optimize the stability parameters of a novel Altoandino Nostoc Sphaericum hydrocolloid (NSH) extracted via micro atomization. Suspensions were prepared by varying the pH, gelatinization temperature and NSH dosage using a 23 factorial arrangement, resulting in eight treatments stored under non-controlled conditions for 20 days. Stability was assessed through turbidity, sedimentation (as sediment transmittance), ζ potential, particle size, color and UV-Vis scanning. Optimization of parameters was conducted using empirical equations, with evaluation based on the correlation coefficient (R2), average relative error (ARE) and X2. The suspensions exhibited high stability throughout the storage period, with optimized control parameters identified at a pH of 4.5, gelatinization temperature of 84.55 °C and NSH dosage of 0.08 g/L. Simulated values included turbidity (99.00%), sedimentation (72.34%), ζ potential (-25.64 mV), particle size (300.00 nm) and color index (-2.00), with simulated results aligning with practical application. These findings suggest the potential use of NSH as a substitute for commercial hydrocolloids, albeit with consideration for color limitations that require further investigation.
Collapse
Affiliation(s)
- Yudith Choque-Quispe
- Department of Environmental Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - David Choque-Quispe
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Carlos A. Ligarda-Samanez
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Aydeé M. Solano-Reynoso
- Department of Basic Sciences, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.F.C.-M.)
| | - Sandro Froehner
- Department of Environmental Engineering, Federal University of Parana, Curitiba 80010, Brazil;
| | - Betsy S. Ramos-Pacheco
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | | | - Liliana Asunción Sumarriva-Bustinza
- Academic Department of Chemistry, Faculty of Science, Universidad Nacional de Educación Enrique Guzman y Valle, Lurigancho-Chosica 15472, Peru;
| |
Collapse
|
3
|
Radu ED, Mureșan V, Emilia Coldea T, Mudura E. Unconventional raw materials used in beer and beer-like beverages production: Impact on metabolomics and sensory profile. Food Res Int 2024; 183:114203. [PMID: 38760135 DOI: 10.1016/j.foodres.2024.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 05/19/2024]
Abstract
Beer is the third most consumed beverage in the world, trailing only water and tea but ranking first among alcoholic beverages. In recent years, producers and researchers have shown a growing interest in brewing diversification and innovation, due to of the widespread consumption of beer. In order to create beers and beer-like products with unique and consumer-pleasing characteristics, the use of unconventional raw materials has become a subject of intensive research. The purpose of this paper is to identify, evaluate and summarize the findings of all relevant unconventional raw materials used in relevant scientific studies, as well as the effect on the metabolomics of beer and beer-like beverages.For the enhancement of beer characteristics, the production process may involve the use of an extremely diverse variety of unconventional raw materials that are not included on thelist of usual ingredients for the beer industry. However, the general trend is to use locally available ingredients as well as functional ingredients. Twoof the most studied functional characteristics involve phenolic compounds and antioxidant activity, which is why the fruit is by far the most commonly used adjunct category, as fruits are particularly important sources of polyphenols and antioxidants. Other uncommon adjuncts used in brewing includeplants, starch sources, spices or even propolis. Moreover, unconventional raw materials are used to enhance the sensory profile by create new characteristics such as new tastes and flavors, accentuation of the cooling sensation or even increasing acceptability among potential consumers, who do not appreciate traditional beers due to their specific characteristics.
Collapse
Affiliation(s)
- Eugen-Dan Radu
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania
| | - Vlad Mureșan
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania
| | - Elena Mudura
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania.
| |
Collapse
|
4
|
de Lima AC, Brandao LR, Botelho BG, Rosa CA, Aceña L, Mestres M, Boqué R. Multivariate Analysis of the Influence of Microfiltration and Pasteurisation on the Quality of Beer during Its Shelf Life. Foods 2023; 13:122. [PMID: 38201150 PMCID: PMC10778496 DOI: 10.3390/foods13010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Gas chromatography-mass spectrometry (GC-MS), physicochemical and microbiological analyses, sensory descriptive evaluation, and multivariate analyses were applied to evaluate the efficiencies of microfiltration and pasteurization processes during the shelf life of beer. Samples of microfiltered and pasteurised beer were divided into fresh and aged groups. A forced ageing process, which consisted of storing fresh samples at 55° C for 6 days in an incubator and then keeping them under ambient conditions prior to analysis, was applied. Physicochemical analysis showed that both microfiltered and pasteurised samples had a slight variation in apparent extract, pH, and bitterness. The samples that underwent heat treatment had lower colour values compared with those that were microfiltered. Chromatographic peak areas of vicinal diketones increased in both fresh and aged samples. The results of the microbiological analysis revealed spoilage lactic acid bacteria (Lactobacillus) and yeasts (Saccharomyces and non-Saccharomyces) in fresh microfiltered samples. In the GC-MS analysis, furfural, considered by many authors as a heat indicator, was detected only in samples that underwent forced ageing and not in samples that were subjected to thermal pasteurisation. Finally, sensory analysis found differences in the organoleptic properties of fresh microfiltered samples compared with the rest of the samples.
Collapse
Affiliation(s)
- Ana Carolina de Lima
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Catalonia, Spain; (A.C.d.L.); (L.A.); (M.M.)
| | | | - Bruno G. Botelho
- Department of Chemistry, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Carlos A. Rosa
- Department of Microbiology, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Laura Aceña
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Catalonia, Spain; (A.C.d.L.); (L.A.); (M.M.)
| | - Montserrat Mestres
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Catalonia, Spain; (A.C.d.L.); (L.A.); (M.M.)
| | - Ricard Boqué
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Catalonia, Spain; (A.C.d.L.); (L.A.); (M.M.)
| |
Collapse
|
5
|
Thongon R, Netramai S, Kijchavengkul T, Yaijam G, Debhakam R. Mathematical modeling and optimization of pasteurization for the internal pressure and physical quality of canned beer. Heliyon 2023; 9:e21493. [PMID: 38027755 PMCID: PMC10661091 DOI: 10.1016/j.heliyon.2023.e21493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Globally, beer is the most popular alcoholic beverage. To accomplish microbial stabilization and extend the shelf life of beer, it is typically subjected to in-package pasteurization using a tunnel pasteurizer. However, high internal pressure can cause can bulging during pasteurization, leading to significant product loss. In this study, an empirical mathematical model was constructed to describe the effects of can thickness (0.245-0.270 mm), fill volume (320-338 mL), carbon dioxide content (5.70-6.10 g/L), and pasteurization temperature (59-66 °C) on the internal pressure inside canned beer. A laboratory-scale pasteurization setup was used to pasteurize samples based on the worst-case scenario of commercial pasteurization. The mathematical model (R2 = 0.90) showed that all parameters significantly influenced the internal pressure of pasteurized canned beer (p < 0.05). Additionally, the physical, chemical, and biological properties of pasteurized canned beer were assessed. All values fell within an acceptable range of industrial standards. A simplified 2nd-order polynomial equation (R2 = 0.90) was created and verified for industrial use. The data are well represented by the simplified model, which suggests that it could be used for optimization of product- and process parameters to reduce the occurrence of can bulging in commercial pasteurization of canned beer.
Collapse
Affiliation(s)
- Ruthaikamol Thongon
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Siriyupa Netramai
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Thitisilp Kijchavengkul
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Gong Yaijam
- Boonrawd Brewery Co., Ltd., Bangkok 10300, Thailand
| | - Rojrit Debhakam
- Singha Beverage Co., Ltd. (Branch No.00001), Nakhon Pathom 73130, Thailand
| |
Collapse
|
6
|
Klimczak K, Cioch-Skoneczny M, Duda-Chodak A. Effects of Dry-Hopping on Beer Chemistry and Sensory Properties-A Review. Molecules 2023; 28:6648. [PMID: 37764422 PMCID: PMC10534726 DOI: 10.3390/molecules28186648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Dry-hopping is the addition of hops to the wort on the cold side of the brewing process. Unlike standard hop additions, its main purpose is not to produce a characteristic bitterness but to extract as much of the hop essential oils as possible, which are largely lost in the standard hopping process. When dry-hopped, it is possible to obtain a beer with an aroma that is difficult to achieve when hops are used on the hot side of the brewing process. As a result, this process has become very popular in recent years, particularly in beers that belong to the 'craft beer revolution' trend. In addition, the usefulness of this process is increasing with the development of new hop varieties with unique aromas. This article presents the main components of hops, focusing on those extracted during the process. Changes in the composition of beer bittering compounds and essential oils resulting from this process are discussed. This paper presents the current state of the knowledge on the factors affecting the degree of extraction, such as hop dosage, the time, and temperature of the process. Issues such as process-related physicochemical changes, hop creep, low flavor stability, haze formation, and green flavor are also discussed.
Collapse
Affiliation(s)
- Krystian Klimczak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland
| | - Monika Cioch-Skoneczny
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland
| | - Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland
| |
Collapse
|
7
|
Senila M, Coldea TE, Senila L, Mudura E, Cadar O. Activated natural zeolites for beer filtration: A pilot scale approach. Heliyon 2023; 9:e20031. [PMID: 37809938 PMCID: PMC10559772 DOI: 10.1016/j.heliyon.2023.e20031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
A clinoptilolite-rich natural zeolite was tested as a substitute for kieselguhr as a filtering material to eliminate ingredients that cause beer haze formation. Two-grain sizes of micronized natural zeolite were thermally activated to 400 °C, to enhance its adsorption performance and remove the impurities adsorbed in the microporous system of zeolites, followed by their physicochemical characterization. The activated zeolites mixed with four commercial filter aids in different ratios were used for beer filtration at the pilot scale. Most of the physicochemical and sensory characteristics of beers filtered with commercial filter aids and with zeolites were similar. Using zeolite in filtering mixtures significantly reduces the number of microorganisms present in the filtered beer, which can eliminate the necessity of beer sterilization after filtration. The results evidenced that activated natural zeolites, which are cheap materials, are promising candidates as filter aids and can replace kieselguhr without producing any degradation of the beer filtration process.
Collapse
Affiliation(s)
- Marin Senila
- Research Institute for Analytical Instrumentation, INCDO-INOE 2000, 67 Donath Street, 400293, Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372, Cluj-Napoca, Romania
| | - Lacrimioara Senila
- Research Institute for Analytical Instrumentation, INCDO-INOE 2000, 67 Donath Street, 400293, Cluj-Napoca, Romania
| | - Elena Mudura
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372, Cluj-Napoca, Romania
| | - Oana Cadar
- Research Institute for Analytical Instrumentation, INCDO-INOE 2000, 67 Donath Street, 400293, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Cadar O, Vagner I, Miu I, Scurtu D, Senila M. Preparation, Characterization, and Performance of Natural Zeolites as Alternative Materials for Beer Filtration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1914. [PMID: 36903029 PMCID: PMC10004079 DOI: 10.3390/ma16051914] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The clarity of the beer is essential to its marketability and good consumer approval. Moreover, the beer filtration aims to remove the unwanted constituents that cause beer haze formation. Natural zeolite, an inexpensive and widespread material, was tested as a substitute filter media for diatomaceous earth in removing the haze constituents in beer. The zeolitic tuff samples were collected from two quarries in Northern Romania: Chilioara, in which the zeolitic tuff has a clinoptilolite content of about 65%, and the Valea Pomilor quarry, containing zeolitic tuff with a clinoptilolite content of about 40%. Two-grain sizes, <40 and <100 µm, from each quarry were prepared and thermally treated at 450 °C in order to improve their adsorption properties and remove organic compounds and for physico-chemical characterization. The prepared zeolites were used for beer filtration in different mixtures with commercial filter aids (DIF BO and CBL3) in laboratory-scale experiments, and the filtered beer was characterized in terms of pH, turbidity, color, taste, flavor, and concentrations of the major and trace elements. The results showed that the taste, flavor, and pH of the filtered beer were generally not affected by filtration, while turbidity and color decreased with an increase in the zeolite content used in the filtration. The concentrations of Na and Mg in the beer were not significantly altered by filtration; Ca and K slowly increased, while Cd and Co were below the limits of quantification. Our results show that natural zeolites are promising aids for beer filtration and can be readily substituted for diatomaceous earth without significant changes in brewery industry process equipment and protocols for preparation.
Collapse
Affiliation(s)
- Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Irina Vagner
- National Research and Development Institute for Cryogenic and Isotopic Technologies Romania, 4 Uzinei Street, 240050 Ramnicu Valcea, Romania
| | - Ion Miu
- SC Utchim S.R.L., 12 Buda Street, 240127 Ramnicu Valcea, Romania
| | - Daniela Scurtu
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Marin Senila
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Benucci I, Mazzocchi C, Lombardelli C, Esti M. Phenolic-Degrading Enzymes: Effect on Haze Active Phenols and Chill Haze in India Pale Ale Beer. Foods 2022; 12:foods12010077. [PMID: 36613293 PMCID: PMC9818860 DOI: 10.3390/foods12010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The development of green and sustainable biotechnological approaches for preventing chill haze formation is currently under investigation. In this preliminary study, laccase and tannase (pure or combined) were applied as phenolic-degrading enzymes during two crucial brewing steps (i. post-mashing and ii. before the yeast inoculum). In post-mashing and irrespective of the dosage applied (100 μL/L or 1 mL/L), tannase-based treatment ensured the complete removal of haze active (HA) phenols, which was proved by the full prevention of chill haze (about 1 EBC vs. 22 EBC in the control sample). Before yeast inoculum for the alcoholic fermentation, the removal of haze active phenols and the prevention of chill haze were both tannase-dosage-dependent (15 and 2 EBC for the lowest and the highest dosages, respectively) although they failed to completely break down the HA phenols. This biotechnological approach did not significantly affect the chromatic properties of treated beer.
Collapse
|
10
|
Królak K, Kobus K, Kordialik-Bogacka E. Effects on beer colloidal stability of full-scale brewing with adjuncts, enzymes, and finings. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThis study investigated the effects on beer colloidal stability of full-scale brewing with adjuncts, enzymes, and finings. Industrial lager beers were produced solely from barley malt or from barley malt with adjuncts (corn grist and starch syrup or unmalted barley). Various stabilization aids were also used (silica gel, PVPP, proline-specific endoprotease, carrageenan). Predictive shelf-life tests were conducted. We analyzed the content of compounds (proteins and polyphenols) generally related to beer colloidal stability. The results show that the haze-forming potential of the beer during storage can be evaluated based on the coagulable nitrogen content (high molecular weight proteins), rather than the total nitrogen content and polyphenol content. A very strong and statistically significant negative correlation was observed between the concentration of coagulable nitrogen and beer colloidal stability. When brewing was conducted with 49% barley raw material and exogenous proteases, especially proline-specific endoprotease, the coagulable nitrogen content fell and beer colloidal stability improved. The use of corn grist and starch syrup as up to 40% of the total grist resulted in a 30% longer physical shelf life compared to the all-malt beer.
Collapse
|
11
|
Salek RN, Lorencová E, Gál R, Kůrová V, Opustilová K, Buňka F. Physicochemical and Sensory Properties of Czech Lager Beers with Increasing Original Wort Extract Values during Cold Storage. Foods 2022; 11:foods11213389. [PMID: 36360002 PMCID: PMC9657140 DOI: 10.3390/foods11213389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2022] Open
Abstract
The scope of the study was the evaluation of the selected physicochemical (O2 and CO2 contents, bitterness, color, total polyphenol content (TPC), turbidity, foaming stability) and sensory properties of Czech lager beer with different original wort extract (OWE) values (OWE of 10.0; 11.0; 11.5; 12.0% w/w) during a cold storage period of 6 months (4 ± 2 °C). The length of the cold storage period did not influence the values of dissolved O2 and CO2, bitterness, color and foam stability of the samples. Contrarily, the TPC, turbidity, and sensory attributes of the samples were affected by the course of cold storage. The OWE values did not affect the development of the parameters tested. All beer samples stored until the 5th month presented “very good” sensory characteristics. Cold storage of beer is advantageous in order to maintain its freshness and sensory attributes at the highest level for the final consumer.
Collapse
Affiliation(s)
- Richardos Nikolaos Salek
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Eva Lorencová
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
- Correspondence: ; Tel.: +420-576-03-3010
| | - Robert Gál
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Vendula Kůrová
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Kristýna Opustilová
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - František Buňka
- Laboratory of Food Quality and Safety Research, Department of Logistics, Faculty of Military Leadership, University of Defence, Kounicova 65, 662 10 Brno, Czech Republic
| |
Collapse
|
12
|
The Influence of Transport and Storage Conditions on Beer Stability—a Systematic Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02790-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Quality changes of HomChaiya rice beer during storage at two alternative temperatures. J Biosci Bioeng 2022; 133:369-374. [DOI: 10.1016/j.jbiosc.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/14/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022]
|
14
|
Haze in Beer: Its Formation and Alleviating Strategies, from a Protein-Polyphenol Complex Angle. Foods 2021; 10:foods10123114. [PMID: 34945665 PMCID: PMC8702196 DOI: 10.3390/foods10123114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/02/2023] Open
Abstract
Beer is one of the oldest and most widely consumed alcoholic beverages. Haze formation in beer is a serious quality problem, as it largely shortens the shelf life and flavor of beer. This paper reviews the factors affecting haze formation and strategies for reducing haze. Haze formation is mainly associated with specific chemical components in malt barley grains, such as proteins. The main factor causing haze formation is a cross-linking of haze active (HA) proteins and HA polyphenols. Many HA proteins and their editing genes or loci have been identified by proteomics and quantitative trait locus (QTL) analysis, respectively. Although some technical approaches have been available for reducing haze formation in beer, including silica and polyvinylpolypyrrolidone (PVPP) adsorbent treatments, the cost of beer production will increase and some flavor will be lost due to reduced relevant polyphenols and proteins. Therefore, breeding the malt barley cultivar with lower HA protein and/or HA polyphenols is the most efficient approach for controlling haze formation. Owing to the completion of barley whole genome sequencing and the rapid development of modern molecular breeding technology, several candidate genes controlling haze formation have been identified, providing a new solution for reducing beer haze.
Collapse
|
15
|
Maia C, Cunha S, Debyser W, Cook D. Impacts of Adjunct Incorporation on Flavor Stability Metrics at Early Stages of Beer Production. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1993054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Carolina Maia
- International Centre for Brewing Science, University of Nottingham, Nottingham, England
| | - Solon Cunha
- Global Innovation and Technology Centre, Anheuser-Busch InBev nv/sa, Leuven, Belgium
| | - Winok Debyser
- Global Innovation and Technology Centre, Anheuser-Busch InBev nv/sa, Leuven, Belgium
| | - David Cook
- International Centre for Brewing Science, University of Nottingham, Nottingham, England
| |
Collapse
|
16
|
Bahmani M, O’Lone CE, Juhász A, Nye-Wood M, Dunn H, Edwards IB, Colgrave ML. Application of Mass Spectrometry-Based Proteomics to Barley Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8591-8609. [PMID: 34319719 PMCID: PMC8389776 DOI: 10.1021/acs.jafc.1c01871] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Barley (Hordeum vulgare) is the fourth most cultivated crop in the world in terms of production volume, and it is also the most important raw material of the malting and brewing industries. Barley belongs to the grass (Poaceae) family and plays an important role in food security and food safety for both humans and livestock. With the global population set to reach 9.7 billion by 2050, but with less available and/or suitable land for agriculture, the use of biotechnology tools in breeding programs are of considerable importance in the quest to meet the growing food gap. Proteomics as a member of the "omics" technologies has become popular for the investigation of proteins in cereal crops and particularly barley and its related products such as malt and beer. This technology has been applied to study how proteins in barley respond to adverse environmental conditions including abiotic and/or biotic stresses, how they are impacted during food processing including malting and brewing, and the presence of proteins implicated in celiac disease. Moreover, proteomics can be used in the future to inform breeding programs that aim to enhance the nutritional value and broaden the application of this crop in new food and beverage products. Mass spectrometry analysis is a valuable tool that, along with genomics and transcriptomics, can inform plant breeding strategies that aim to produce superior barley varieties. In this review, recent studies employing both qualitative and quantitative mass spectrometry approaches are explored with a focus on their application in cultivation, manufacturing, processing, quality, and the safety of barley and its related products.
Collapse
Affiliation(s)
- Mahya Bahmani
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Clare E. O’Lone
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Angéla Juhász
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Mitchell Nye-Wood
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Hugh Dunn
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Ian B. Edwards
- Edstar
Genetics Pty Ltd, SABC - Loneragan Building, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Michelle L. Colgrave
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
- CSIRO
Agriculture and Food, 306 Carmody Road, St. Lucia, Queensland 4067, Australia
- Phone: +61-7-3214-2697. . Fax: +61-7-3214-2900
| |
Collapse
|
17
|
Jacobs L, Meesters J, Parijs I, Hooyberghs G, Van der Eycken EV, Lories B, Steenackers HP. 2-Aminoimidazoles as potent inhibitors of contaminating brewery biofilms. BIOFOULING 2021; 37:61-77. [PMID: 33573402 DOI: 10.1080/08927014.2021.1874366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Cleaning and disinfection protocols are not always able to remove biofilm microbes present in breweries, indicating that novel anti-biofilm strategies are needed. The preventive activities of three in-house synthesized members of the 2-aminoimidazole class of anti-biofilm molecules were studied against 17 natural brewery biofilms and benchmarked against 18 known inhibitors. Two 2-aminoimidazoles belonged to the top six inhibitors, which were retested against 12 defined brewery biofilm models. For the three best inhibitors, tannic acid (n° 1), 2-aminoimidazole imi-AAC-5 (n° 2), and baicalein (n° 3), the effect on the microbial metabolic activity was evaluated. Here, the top three inhibitors showed similar effectiveness, with baicalein possessing a slightly higher efficacy. Even though the 2-aminoimidazole was the second-best inhibitor, it showed a lower biocidal activity than tannic acid, making it less prone to resistance evolution. Overall, this study supports the potential of 2-aminoimidazoles as a preventive anti-biofilm strategy.
Collapse
Affiliation(s)
- Lene Jacobs
- Centrum of Microbial and Plant Genetics, KU Leuven, Belgium
| | | | - Ilse Parijs
- Centrum of Microbial and Plant Genetics, KU Leuven, Belgium
| | - Geert Hooyberghs
- Laboratory for Organic and Microwave-Assisted Chemistry - LOMAC, KU Leuven, Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic and Microwave-Assisted Chemistry - LOMAC, KU Leuven, Belgium
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Bram Lories
- Centrum of Microbial and Plant Genetics, KU Leuven, Belgium
| | | |
Collapse
|
18
|
Investigation and identification of foreign turbidity particles in beverages via Raman micro-spectroscopy. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Jongberg S, Andersen ML, Lund MN. Characterisation of protein-polyphenol interactions in beer during forced aging. JOURNAL OF THE INSTITUTE OF BREWING 2020. [DOI: 10.1002/jib.623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sisse Jongberg
- Department of Food Science, Faculty of Science; University of Copenhagen; Rolighedsvej 26 Frederiksberg 1958 Denmark
| | - Mogens L. Andersen
- Department of Food Science, Faculty of Science; University of Copenhagen; Rolighedsvej 26 Frederiksberg 1958 Denmark
| | - Marianne N. Lund
- Department of Food Science, Faculty of Science; University of Copenhagen; Rolighedsvej 26 Frederiksberg 1958 Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences; University of Copenhagen; Blegdamsvej 3 Copenhagen N 2200 Denmark
| |
Collapse
|
20
|
Kahle EM, Zarnkow M, Jacob F. Beer Turbidity Part 1: A Review of Factors and Solutions. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1803468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Eva-Maria Kahle
- Forschungszentrum Weihenstephan für Brau- und Lebensmittelqualität, Technische Universität München, Alte Akademie 3, 85354 Freising-Weihenstephan, Germany
| | - Martin Zarnkow
- Forschungszentrum Weihenstephan für Brau- und Lebensmittelqualität, Technische Universität München, Alte Akademie 3, 85354 Freising-Weihenstephan, Germany
| | - Fritz Jacob
- Forschungszentrum Weihenstephan für Brau- und Lebensmittelqualität, Technische Universität München, Alte Akademie 3, 85354 Freising-Weihenstephan, Germany
| |
Collapse
|
21
|
Benucci I, Lombardelli C, Cacciotti I, Esti M. Papain Covalently Immobilized on Chitosan-Clay Nanocomposite Films: Application in Synthetic and Real White Wine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1622. [PMID: 32824943 PMCID: PMC7558937 DOI: 10.3390/nano10091622] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
Increasing attention has been recently paid to the development of nanocomposite materials for food application as new tool to enhance the mechanical and thermal properties of polymers. In this study, novel chitosan-clay nanocomposite films were produced as carriers for the covalent immobilization of papain, by using a fixed amount of chitosan (1% w/v) and a food-grade activated montmorillonite (Optigel, OPT) or a high-purity unmodified montmorillonite (SMP), in four different weight percentages with respect to chitosan (i.e., 20, 30, 50, 70% w/w). Both nanoclays (OPT and SMP) improved the mechanical properties of the obtained nanocomposites, and the OPT films showed the highest Young modulus and mechanical resistance (σmax). The nanocomposites were used as carriers for the covalent immobilization of papain, which was preliminarily characterized in model wine towards a synthetic substrate, showing the highest efficiency in the release of the reaction product when it was bound on OPT-30 and OPT-50 films. Finally, the latter biocatalyst (papain on OPT-50 film) was applied for the protein stabilization of two different unfined white wines, and it efficiently reduced both the haze potential and the protein content.
Collapse
Affiliation(s)
- Ilaria Benucci
- Department of Agriculture and Forestry Science (DAFNE), Tuscia University, via S. Camillo de Lellis snc, 01100 Viterbo, Italy; (I.B.); (C.L.); (M.E.)
| | - Claudio Lombardelli
- Department of Agriculture and Forestry Science (DAFNE), Tuscia University, via S. Camillo de Lellis snc, 01100 Viterbo, Italy; (I.B.); (C.L.); (M.E.)
| | - Ilaria Cacciotti
- Department of Engineering, University of Rome “Niccolò Cusano”, INSTM RU, Via Don Carlo Gnocchi, 3, 00166 Rome, Italy
| | - Marco Esti
- Department of Agriculture and Forestry Science (DAFNE), Tuscia University, via S. Camillo de Lellis snc, 01100 Viterbo, Italy; (I.B.); (C.L.); (M.E.)
| |
Collapse
|
22
|
Abstract
Khadi is a popular traditional alcoholic beverage in rural households in Botswana. The product is produced by fermentation of ripened sun-dried Grewia flava (Malvaceae) fruits supplemented with brown table sugar. Despite its popularity, its growing consumer acceptance, its potential nutritional value, and its contribution to the socio-economic lifestyle of Botswana, the production process remains non-standardized. Non-standardized production processes lead to discrepancies in product quality and safety as well as varying shelf life. Identification of unknown fermentative microorganisms of khadi is an important step towards standardization of its brewing process for entrance into commercial markets. The aim of this study was to isolate and identify bacteria and yeasts responsible for fermentation of khadi. Yeasts and bacteria harbored in 18 khadi samples from 18 brewers in central and northern Botswana were investigated using classic culture-dependent techniques and DNA sequencing methods. Additionally, we used the same techniques to investigate the presence of bacteria and yeasts on six batches of ripened-dried G. flava fruits used for production of the sampled brews. Our results revealed that Saccharomyces cerevisiae closely related to a commercial baker’s yeast strain sold locally was the most predominant yeast species in khadi suggesting a possible non-spontaneous brewing process. However, we also detected diverse non-Saccharomyces yeasts, which are not available commercially in retail shops in Botswana. This suggests that spontaneous fermentation is partially responsible for fermentation of khadi. This study, presenting the first microbiological characterization of a prominent traditional alcoholic beverage in Botswana, is vital for development of starter cultures for the production of a consistent product towards the commercialization of khadi.
Collapse
|
23
|
Development of a Rapid Method to Assess Beer Foamability Based on Relative Protein Content Using RoboBEER and Machine Learning Modeling. BEVERAGES 2020. [DOI: 10.3390/beverages6020028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Foam-related parameters are associated with beer quality and dependent, among others, on the protein content. This study aimed to develop a machine learning (ML) model to predict the pattern and presence of 54 proteins. Triplicates of 24 beer samples were analyzed through proteomics. Furthermore, samples were analyzed using the RoboBEER to evaluate 15 physical parameters (color, foam, and bubbles), and a portable near-infrared (NIR) device. Proteins were grouped according to their molecular weight (MW), and a matrix was developed to assess only the significant correlations (p < 0.05) with the physical parameters. Two ML models were developed using the NIR (Model 1), and RoboBEER (Model 2) data as inputs to predict the relative quantification of 54 proteins. Proteins in the 0–20 kDa group were negatively correlated with the maximum volume of foam (MaxVol; r = −0.57) and total lifetime of foam (TLTF; r = −0.58), while those within 20–40 kDa had a positive correlation with MaxVol (r = 0.47) and TLTF (r = 0.47). Model 1 was not as accurate (testing r = 0.68; overall r = 0.89) as Model 2 (testing r = 0.90; overall r = 0.93), which may serve as a reliable and affordable method to incorporate the relative quantification of important proteins to explain beer quality.
Collapse
|
24
|
Jongberg S, Andersen ML, Lund MN. Covalent Protein-Polyphenol Bonding as Initial Steps of Haze Formation in Beer. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2019.1705045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sisse Jongberg
- Faculty of Science, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Mogens L. Andersen
- Faculty of Science, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Marianne N. Lund
- Faculty of Science, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
25
|
Evaluation of force-carbonated Czech-type lager beer quality during storage in relation to the applied type of packaging. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Abstract
Beers are differentiated mainly according to their visual appearance and their fermentation process. The main quality characteristics of beer are appearance, aroma, flavor, and mouthfeel. Important visual attributes of beer are foam appearance (volume and persistence), as well as the color and clarity. To replace manual inspection, automatic, objective, rapid and repeatable external quality inspection systems, such as computer vision, are becoming very important and necessary. Computer vision is a non-contact optical technique, suitable for the non-destructive evaluation of the food product quality. Currently, the main application of computer vision occurs in automated inspection and measurement, allowing manufacturers to keep control of product quality. This paper presents an overview of the applications and the latest achievements of the computer vision methods in determining the external quality attributes of beer.
Collapse
|
27
|
Knez Hrnčič M, Španinger E, Košir IJ, Knez Ž, Bren U. Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects. Nutrients 2019; 11:E257. [PMID: 30678345 PMCID: PMC6412513 DOI: 10.3390/nu11020257] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
Hop plants comprise a variety of natural compounds greatly differing in their structure and properties. A wide range of methods have been developed for their isolation and chemical analysis, as well as for determining their antioxidative, antimicrobial, and antigenotoxic potentials. This contribution provides an overview of extraction and fractionation techniques of the most important hop compounds known for their health-promoting features. Although hops remain the principal ingredient for providing the taste, stability, and antimicrobial protection of beer, they have found applications in the pharmaceutical and other food industries as well. This review focuses on numerous health-promoting effects of hops raging from antioxidative, sedative, and anti-inflammatory potentials, over anticarcinogenic features to estrogenic activity. Therefore, hops should be exploited for the prevention and even healing of several prevalent diseases like cardiovascular disorders and various cancer types. New ideas for future studies on hops are finally presented: computational investigations of chemical reactivities of hop compounds, nanoencapsulation, and synergistic effects leading to a higher bioavailability of biologically active substances as well as the application of waste hop biomass from breweries for the production of high-added-value products in accordance with the biorefinery concept.
Collapse
Affiliation(s)
- Maša Knez Hrnčič
- Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Eva Španinger
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Iztok Jože Košir
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, SI-3310 Žalec, Slovenia.
| | - Željko Knez
- Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| |
Collapse
|