1
|
Khiaosa-Ard R, Pacífico C, Mahmood M, Mickdam E, Meixner J, Traintinger LS, Zebeli Q. Changes in the solid-associated bacterial and fungal communities following ruminal in vitro fermentation of winery by-products: aspects of the bioactive compounds and feed safety. Anaerobe 2024; 89:102893. [PMID: 39122139 DOI: 10.1016/j.anaerobe.2024.102893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/11/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVES Feeding winery by-products (WBP) could affect the bovine microbiome because of their phenol compounds and a transfer of WBP-associated microbiota. This work examined changes in the underexplored solid-associated rumen microbiome following the inclusion of WBP. METHODS Using the rumen simulation technique, fermenters were inoculated with the inoculum of donor cows and were fed one of six dietary treatments including a control diet of 70 % hay +30 % concentrate (CON), control diet + 3.7 % commercial grapeseed extract (EXT), 65 % hay + 25 % concentrate + 10 % grape pomace (GP-low), 56 % hay + 24 % concentrate + 20 % grape pomace (GP-high), 70 % hay + 25 % concentrate + 5 % grapeseed meal (GS-low), and 65 % hay + 25 % concentrate + 10 % grapeseed meal (GS-high) (dry matter basis). The compositional changes of bacteria, archaea and fungi in the solid fractions were based on 16S and ITS2 rRNA sequencing. RESULTS The alpha- and beta-diversity of the microbiota were unaffected. However, treatment modified the bacterial composition at low taxonomic levels. Butyrivibrio fibrisolvens, Treponema bryantii, and bacterium MC2010 decreased in EXT, while Treponema berlinense was increased in GP-high and GP-low compared to CON. Concerning fungi, GS-high increased Candida spp., Lachancea spp., Microdochium spp., Mucor spp., Pichia spp., Saturnispora spp., and Zygosaccharomyces spp. compared to CON. Many non-Saccharomyces yeasts were detected in WBP samples but absent in donor cows and CON samples. The genera affected by treatment were not the major contributors to the ruminal degradation of nutrients. CONCLUSIONS The results indicate a sensitivity of rumen solid bacteria to grape phenols when delivered as an extract and a transfer of WBP-associated microbiota into the rumen.
Collapse
Affiliation(s)
- Ratchaneewan Khiaosa-Ard
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Cátia Pacífico
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Mubarik Mahmood
- Animal Nutrition Section, Department of Animal Sciences, University of Veterinary and Animal Sciences, Lahore, Subcampus Jhang, 12 Km Chiniot Road, 35200 Jhang, Pakistan
| | - Elsayed Mickdam
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Julia Meixner
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Laura-Sophie Traintinger
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Qendrim Zebeli
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
2
|
Fazio NA, Russo N, Foti P, Pino A, Caggia C, Randazzo CL. Inside Current Winemaking Challenges: Exploiting the Potential of Conventional and Unconventional Yeasts. Microorganisms 2023; 11:1338. [PMID: 37317312 DOI: 10.3390/microorganisms11051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
Wine represents a complex matrix in which microbial interactions can strongly impact the quality of the final product. Numerous studies have focused on optimizing microbial approaches for addressing new challenges to enhance quality, typicity, and food safety. However, few studies have investigated yeasts of different genera as resources for obtaining wines with new, specific traits. Currently, based on the continuous changes in consumer demand, yeast selection within conventional Saccharomyces cerevisiae and unconventional non-Saccharomyces yeasts represents a suitable opportunity. Wine fermentation driven by indigenous yeasts, in the various stages, has achieved promising results in producing wines with desired characteristics, such as a reduced content of ethanol, SO2, and toxins, as well as an increased aromatic complexity. Therefore, the increasing interest in organic, biodynamic, natural, or clean wine represents a new challenge for the wine sector. This review aims at exploring the main features of different oenological yeasts to obtain wines reflecting the needs of current consumers in a sustainability context, providing an overview, and pointing out the role of microorganisms as valuable sources and biological approaches to explore potential and future research opportunities.
Collapse
Affiliation(s)
- Nunzio A Fazio
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
| | - Nunziatina Russo
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Paola Foti
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
| | - Alessandra Pino
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Cinzia L Randazzo
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| |
Collapse
|
3
|
Valcárcel-Muñoz MJ, Guerrero-Chanivet M, Del Carmen Rodríguez-Dodero M, Butrón-Benítez D, de Valme García-Moreno M, Guillén-Sánchez DA. Analytical and Chemometric Characterization of Sweet Pedro Ximénez Sherry Wine during Its Aging in a Criaderas y Solera System. Foods 2023; 12:foods12091911. [PMID: 37174448 PMCID: PMC10178547 DOI: 10.3390/foods12091911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Pedro Ximénez is a naturally sweet sherry wine produced in southern Spain from raisined Pedro Ximénez grape must and aged using a traditional Criaderas y Solera system. Complete analytical characterization has been useful in determining which parameters are the most influential in the aging of this wine. The organic acids, volatile compounds (higher alcohols, esters, aldehydes, and acetals), and phenolic compounds of this wine evolve during its aging, mainly through physico-chemical reactions and the contributions of wood compounds. During their aging, Pedro Ximénez sherry wines develop their organoleptic profiles, as tasting sessions have confirmed. A strong correlation between the aging of a wine and the parameters analyzed has also been corroborated through an MLR analysis. This allowed for the development of a model that, by using just 8 of the variables considered in the study, led to the determination of wine samples' ages at over 97% confidence. This constitutes a rather useful tool for wineries to control Pedro Ximénez sherry wine aging processes.
Collapse
Affiliation(s)
| | - María Guerrero-Chanivet
- Bodegas Fundador S.L.U., C/San Ildefonso, n 3, 11403 Jerez de la Frontera, Spain
- Departamento de Química Analítica, Facultad de Ciencias, Instituto Investigación Vitivinícola y Agroalimentaria (IVAGRO), Campus Universitario de Puerto Real, Universidad de Cádiz, 11510 Puerto Real, Spain
| | - María Del Carmen Rodríguez-Dodero
- Departamento de Química Analítica, Facultad de Ciencias, Instituto Investigación Vitivinícola y Agroalimentaria (IVAGRO), Campus Universitario de Puerto Real, Universidad de Cádiz, 11510 Puerto Real, Spain
| | - Daniel Butrón-Benítez
- Bodegas Fundador S.L.U., C/San Ildefonso, n 3, 11403 Jerez de la Frontera, Spain
- Departamento de Química Analítica, Facultad de Ciencias, Instituto Investigación Vitivinícola y Agroalimentaria (IVAGRO), Campus Universitario de Puerto Real, Universidad de Cádiz, 11510 Puerto Real, Spain
| | - María de Valme García-Moreno
- Departamento de Química Analítica, Facultad de Ciencias, Instituto Investigación Vitivinícola y Agroalimentaria (IVAGRO), Campus Universitario de Puerto Real, Universidad de Cádiz, 11510 Puerto Real, Spain
| | - Dominico A Guillén-Sánchez
- Departamento de Química Analítica, Facultad de Ciencias, Instituto Investigación Vitivinícola y Agroalimentaria (IVAGRO), Campus Universitario de Puerto Real, Universidad de Cádiz, 11510 Puerto Real, Spain
| |
Collapse
|
4
|
Analytical, Chemometric and Sensorial Characterization of Oloroso and Palo Cortado Sherries during Their Ageing in the Criaderas y Solera System. Foods 2022; 11:foods11244062. [PMID: 36553804 PMCID: PMC9777549 DOI: 10.3390/foods11244062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Oloroso and Palo Cortado are two types of sherry wines, produced in the Sherry Wine Region in Southern Spain, known as Marco de Jerez, where it is aged following the traditional Criaderas y Solera system. All of them are aged through oxidative ageing, even though the peculiar Palo Cortado Sherry wine is also aged biologically under a veil of flor yeasts in the first stage. Total dry extract, organic acids, aldehydes, esters, higher alcohols and phenolic compounds in these sherry wines evolve during their ageing as a consequence of evaporation and/or perspiration processes, chemical reactions, extraction of compounds from oakwood and microbiological activity. Sherry wines develop their characteristic organoleptic profile during their ageing, as could be proven through their tasting sessions. According to the sherry type, some natural groupings of the wines could be observed after their principal component analysis. Furthermore, by multiple linear regression methods, an important correlation between the parameters that were analyzed and the ageing of each specific wine has been confirmed, which allowed us to establish two different models, each corresponding to the sherry type in question. Only five of the variables that were investigated were required to successfully estimate each wine's age at over 99% confidence. This represents a rather convenient tool for wineries to monitor the ageing of these sherry wines.
Collapse
|
5
|
Miguel GA, Carlsen S, Arneborg N, Saerens SM, Laulund S, Knudsen GM. Non-Saccharomyces yeasts for beer production: Insights into safety aspects and considerations. Int J Food Microbiol 2022; 383:109951. [DOI: 10.1016/j.ijfoodmicro.2022.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
|
6
|
Ivić I, Kopjar M, Obhođaš J, Vinković A, Babić J, Mesić J, Pichler A. Influence of the Processing Parameters on the Aroma Profile and Chemical Composition of Conventional and Ecological Cabernet Sauvignon Red Wines during Concentration by Reverse Osmosis. MEMBRANES 2022; 12:1008. [PMID: 36295766 PMCID: PMC9609608 DOI: 10.3390/membranes12101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Wine aroma represents one of the most important quality parameters and it is influenced by various factors, such as climate conditions, viticulture and vinification techniques, storage conditions, etc. Wines produced from conventionally and ecologically grown grapes of the same variety have different chemical compositions and aroma profiles. The composition of wine can also be influenced by the additional treatment of wine, such as the concentration of wine by reverse osmosis (RO). The aim of this study was to investigate the influence of four different pressures (2.5, 3.5, 4.5 and 5.5 MPa) and two temperature regimes (with and without cooling) on the aroma profile and chemical composition of conventional and ecological Cabernet Sauvignon red wine during concentration by reverse osmosis. The results showed that different processing parameters influenced the permeate flux, the retentate temperature and the compounds retention. Higher working pressures (4.5 and 5.5 MPa) and the regime, with cooling, resulted in a higher retention of the total aroma compounds than the opposite processing parameters. The retention of individual compounds depended also on their chemical properties and their interactions with the membrane surface. The reverse osmosis membranes proved to be permeable for ethanol, acetic acid or undesirable 4-ethylphenol and 4-ethylguaiacol that made them applicable for their correction or removal.
Collapse
Affiliation(s)
- Ivana Ivić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Mirela Kopjar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Jasmina Obhođaš
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | | | - Jurislav Babić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Josip Mesić
- Polytechnic in Požega, Vukovarska 17, 34000 Požega, Croatia
| | - Anita Pichler
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| |
Collapse
|
7
|
Bullé Rêgo ES, Santos DL, Hernández-Macedo ML, Padilha FF, López JA. Methods for the prevention and control of microbial spoilage and undesirable compounds in wine manufacturing. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Ivić I, Kopjar M, Buljeta I, Pichler D, Mesić J, Pichler A. Influence of Reverse Osmosis Process in Different Operating Conditions on Phenolic Profile and Antioxidant Activity of Conventional and Ecological Cabernet Sauvignon Red Wine. MEMBRANES 2022; 12:76. [PMID: 35054602 PMCID: PMC8777971 DOI: 10.3390/membranes12010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
Red wine polyphenols are responsible for its colour, astringency, and bitterness. They are known as strong antioxidants that protect the human body from the harmful effects of free radicals and prevent various diseases. Wine phenolics are influenced by viticulture methods and vinification techniques, and therefore, conventionally and ecologically produced wines of the same variety do not have the same phenolic profile. Ecological viticulture avoids the use of chemical adjuvants in vineyards in order to minimise their negative influence on the environment, wine, and human health. The phenolic profile and antioxidant activity of wine can also be influenced by additional treatments, such as concentration by reverse osmosis. The aim of this study was to investigate the influence of four different pressures (2.5, 3.5, 4.5, and 5.5 MPa) and two temperature regimes (with and without cooling) on the phenolic profile and antioxidant activity of conventional and ecological Cabernet Sauvignon red wine during concentration by reverse osmosis. The results showed that retention of individual phenolic compounds depended on the applied processing parameters, chemical composition of the initial wine, and chemical properties of a compound. Higher pressure and retentate cooling favoured the retention of total polyphenols, flavonoids, and monomeric anthocyanins, compared to the opposite conditions. The same trend was observed for antioxidant activity.
Collapse
Affiliation(s)
- Ivana Ivić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (M.K.); (I.B.)
| | - Mirela Kopjar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (M.K.); (I.B.)
| | - Ivana Buljeta
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (M.K.); (I.B.)
| | | | - Josip Mesić
- Polytechnic in Požega, Vukovarska 17, 34000 Požega, Croatia;
| | - Anita Pichler
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (M.K.); (I.B.)
| |
Collapse
|
9
|
Concentration with Nanofiltration of Red Wine Cabernet Sauvignon Produced from Conventionally and Ecologically Grown Grapes: Effect on Phenolic Compounds and Antioxidant Activity. MEMBRANES 2021; 11:membranes11050322. [PMID: 33925172 PMCID: PMC8146389 DOI: 10.3390/membranes11050322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
The aim of this study was to investigate the influence of different operating conditions (four pressures: 2.5, 3.5, 4.5 and 5.5 MPa; two temperature regimes: with and without cooling) and wine type on phenolic compounds retention during the nanofiltration process of two Cabernet Sauvignon red wines (conventionally and ecologically produced). The nanofiltration process was conducted on Alfa Laval LabUnit M20 with plate module and six NF M20 membranes. In initial wines and obtained retentates, total polyphenol and flavonoid contents, monomeric anthocyanins content, antioxidant activity, individual phenolic compounds and CIELab colour parameters were determined. A loss of total phenolic compounds and decrease in antioxidant activity was observed in all retentates comparing to initial wine. However, retentate cooling and higher pressure increased their retention. Besides processing parameters, individual phenolic compound retention depended on several factors, such as the wine type, chemical properties of compounds and membrane type, and their combinations. Different chemical composition of initial conventional and ecological wine influenced the retention of individual compounds.
Collapse
|
10
|
Ivić I, Kopjar M, Obhođaš J, Vinković A, Pichler D, Mesić J, Pichler A. Concentration with Nanofiltration of Red Wine Cabernet Sauvignon Produced from Conventionally and Ecologically Grown Grapes: Effect on Volatile Compounds and Chemical Composition. MEMBRANES 2021; 11:membranes11050320. [PMID: 33925755 PMCID: PMC8145285 DOI: 10.3390/membranes11050320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022]
Abstract
Ecological viticulture represent an upward trend in many countries. Unlike conventional viticulture, it avoids the use of chemical fertilizers and other additives, minimizing the impact of chemicals on the environment and human health. The aim of this study was to investigate the influence of nanofiltration (NF) process on volatiles and chemical composition of conventional and ecological Cabernet Sauvignon red wine. The NF process was conducted on laboratory Alfa Laval LabUnit M20 (De Danske Sukkerfabrikker, Nakskov, Denmark) equipped with six NF M20 membranes in a plate module, at two temperature regimes, with and without cooling and four pressures (2.5, 3.5, 4.5 and 5.5 MPa). Different processing parameters significantly influenced the permeate flux which increased when higher pressure was applied. In initial wines and obtained retentates, volatile compounds, chemical composition and elements concentration were determined. The results showed that the higher pressure and retentate cooling was more favourable for total volatiles retention than lower pressure and higher temperature. Individual compound retention depended on its chemical properties, applied processing parameters and wine composition. Nanofiltration process resulted in lower concentrations of ethanol, acetic acid (>50%), 4-ethylphenol and 4-ethylguaiacol (>90%). Different composition of initial feed (conventional and ecological wine) had an important impact on retention of elements.
Collapse
Affiliation(s)
- Ivana Ivić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (M.K.)
| | - Mirela Kopjar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (M.K.)
| | - Jasmina Obhođaš
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (J.O.); (A.V.)
| | - Andrija Vinković
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (J.O.); (A.V.)
| | | | - Josip Mesić
- Polytechnic in Požega, Vukovarska 17, 34000 Požega, Croatia;
| | - Anita Pichler
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia; (I.I.); (M.K.)
- Correspondence:
| |
Collapse
|
11
|
Abstract
Modern industrial winemaking is based on the use of specific starters of wine strains. Commercial wine strains present several advantages over natural isolates, and it is their use that guarantees the stability and reproducibility of industrial winemaking technologies. For the highly competitive wine market with new demands for improved wine quality and wine safety, it has become increasingly critical to develop new yeast strains. In the last decades, new possibilities arose for creating upgraded wine yeasts in the laboratory, resulting in the development of strains with better fermentation abilities, able to improve the sensory quality of wines and produce wines targeted to specific consumers, considering their health and nutrition requirements. However, only two genetically modified (GM) wine yeast strains are officially registered and approved for commercial use. Compared with traditional genetic engineering methods, CRISPR/Cas9 is described as efficient, versatile, cheap, easy-to-use, and able to target multiple sites. This genetic engineering technique has been applied to Saccharomyces cerevisiae since 2013. In this review, we aimed to overview the use of CRISPR/Cas9 editing technique in wine yeasts to combine develop phenotypes able to increase flavor compounds in wine without the development of off-flavors and aiding in the creation of “safer wines.”
Collapse
|
12
|
Abstract
Non-Saccharomyces yeast species are currently a biotechnology trend in enology and broadly used to improve the sensory profile of wines because they affect aroma, color, and mouthfeel. They have become a powerful biotool to modulate the influence of global warming on grape varieties, helping to maintain the acidity, decrease the alcoholic degree, stabilize wine color, and increase freshness. In cool climates, some non-Saccharomyces can promote demalication or color stability by the formation of stable derived pigments. Additionally, non-Saccharomyces yeasts open new possibilities in biocontrol for removing spoilage yeast and bacteria or molds that can produce and release mycotoxins, and therefore, can help in reducing SO2 levels. The promising species Hanseniaspora vineae is analyzed in depth in this Special Issue in two articles, one concerning the glycolytic and fermentative metabolisms and its positive role and sensory impact by the production of aromatic esters and lysis products during fermentation are also assessed.
Collapse
|
13
|
Scansani S, Rauhut D, Brezina S, Semmler H, Benito S. The Impact of Chitosan on the Chemical Composition of Wines Fermented with Schizosaccharomyces pombe and Saccharomyces cerevisiae. Foods 2020; 9:foods9101423. [PMID: 33050127 PMCID: PMC7599843 DOI: 10.3390/foods9101423] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 11/16/2022] Open
Abstract
This study investigates the influence of the antimicrobial agent chitosan on a selected Schizosaccharomyces pombe strain during the alcoholic fermentation of ultra-pasteurized grape juice with a high concentration of malic acid. It also studies a selected Saccharomyces cerevisiae strain as a control. The study examines several parameters relating to wine quality, including volatile and non-volatile compounds. The principal aim of the study is to test the influence of chitosan on the final chemical composition of the wine during alcoholic fermentation, and to compare the two studied fermentative yeasts between them. The results show that chitosan influences the final concentration of acetic acid, ethanol, glycerol, acetaldehyde, pyruvic acid, α-ketoglutarate, higher alcohols, acetate esters, ethyl esters, and fatty acids, depending on the yeast species.
Collapse
Affiliation(s)
- Stefano Scansani
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University (HGU), Von-Lade-Straße 1, 65366 Geisenheim, Germany; (S.S.); (D.R.); (S.B.); (H.S.)
| | - Doris Rauhut
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University (HGU), Von-Lade-Straße 1, 65366 Geisenheim, Germany; (S.S.); (D.R.); (S.B.); (H.S.)
| | - Silvia Brezina
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University (HGU), Von-Lade-Straße 1, 65366 Geisenheim, Germany; (S.S.); (D.R.); (S.B.); (H.S.)
| | - Heike Semmler
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University (HGU), Von-Lade-Straße 1, 65366 Geisenheim, Germany; (S.S.); (D.R.); (S.B.); (H.S.)
| | - Santiago Benito
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-910671107
| |
Collapse
|