1
|
Isas AS, Balcells MF, Maldonado Galdeano C, Palomo I, Rodriguez L, Fuentes E, Luna Pizarro P, Mateos Briz R, Mozzi F, Van Nieuwenhove C. Fermented pomegranate juice enriched with pomegranate seed oil ameliorates metabolic disorders associated with a high-fat diet in C57BL/6 mice. Food Chem 2025; 463:141434. [PMID: 39348771 DOI: 10.1016/j.foodchem.2024.141434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/14/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
This study investigated the health-functional properties of a lactic fermented pomegranate juice (FPJ) enriched with pomegranate seed oil (FPJO) by using the fruit-origin strain Lactiplantibacillus paraplantarum CRL 2051 (FPJO-CRL2051). For this aim, the in vitro human antiplatelet aggregation effect and antioxidant activities were determined in the fermented juices while in vivo studies using high-fat-diet (HFD) C57BL/6 mice fed with a high-fat diet or pomegranate fermented juices for 8 weeks were performed. A high anti-platelet aggregation activity for FPJO-CRL2051 was determined. The formulated juice was administered to C57BL/6 HFD mice over 8 weeks, which showed a significant decrease in triglycerides, LDL-C, and pro-inflammatory cytokines levels. The FPJO-CRL2051 administration was effective in ameliorating liver damage caused by HFD, reducing fat accumulation and oxidative biomarkers, and improving the liver fatty acid profile by incorporation of conjugated fatty acids. This study shows the significance of lactic fermentation in developing novel fermented plant-based beverages with enhanced functional activities with a circular economy approach for the prevention of metabolic disorders.
Collapse
Affiliation(s)
- Ana Sofía Isas
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - María Florencia Balcells
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Carolina Maldonado Galdeano
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Iván Palomo
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, 3460000 Talca, Chile
| | - Lyanne Rodriguez
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, 3460000 Talca, Chile
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, 3460000 Talca, Chile
| | - Patricia Luna Pizarro
- Facultad de Ingeniería, Universidad Nacional de Jujuy, San Salvador de Jujuy, Argentina
| | - Raquel Mateos Briz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN)-CSIC, Departamento de Metabolismo y Nutrición, José Antonio Novais 10, Madrid, 28040, Spain
| | - Fernanda Mozzi
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Carina Van Nieuwenhove
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, San Miguel de Tucumán, 4000, Tucumán, Argentina; Instituto de Morfología Animal- Área Zoología, Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán 4000, Tucumán, Argentina.
| |
Collapse
|
2
|
Rastogi M, Singh V, Shaida B, Siddiqui S, Bangar SP, Phimolsiripol Y. Biofortification, metabolomic profiling and quantitative analysis of vitamin B 12 enrichment in guava juice via lactic acid fermentation using Levilactobacillus brevis strain KU15152. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9191-9201. [PMID: 39011860 DOI: 10.1002/jsfa.13741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Chemical fortification and dose supplementation of vitamin B12 are widely implemented to combat deficiency symptoms. However, in situ, fortification of vitamin B12 in food matrixes can be a promising alternative to chemical fortification. The present study aimed to produce vitamin B12-rich, probiotic guava juice fermented with Levilactobacillus brevis strain KU15152. Pasteurized fresh guava juice was inoculated with 7.2 log CFU mL-1 L. brevis strain KU15152 and incubated for 72 h at 37 °C anaerobically. The antioxidants, total phenolic compounds, vitamin B12 production, sugars, organic acids, pH and viable count were analyzed at 24, 48 and 72 h of incubation. The fermented juice was stored at 4 °C, and the changes in its functional properties were analyzed at 7-day intervals up to 28 days of storage. RESULTS During fermentation, the bacteria cell count was increased from 7.01 ± 0.06 to 9.76 ± 0.42 log CFU mL-1 after 72 h of fermentation and was decreased to 6.94 ± 0.34 CFU mL-1 during storage at 4 °C after 28 days. The pH, total soluble solids, crude fiber, citric acid and total sugars decreased, while titratable acidity, total protein, antioxidants, phenolic compounds and lactic acid contents increased during fermentation. The fermented guava juice exhibited higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS)) radical scavenging activities (85.97% and 75.97%, respectively) at 48 h of fermentation. The concentration of active vitamin B12 in the sample reached 109.5 μg L-1 at 72 h of fermentation. However, this concentration gradually decreased to 70.2 μg L-1 during the storage period. During storage for 28 days at 4 °C, both the fermented and control guava juices exhibited a decline in antioxidant and phenolic compound concentrations. Furthermore, the addition of 20% honey and guava flavor enhanced the organoleptic properties and acceptability of fermented guava juice. CONCLUSION The value-added fermented guava juice could be a novel functional food product to combat vitamin B12 deficiency. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Mayuri Rastogi
- Nutrition and Dietetics Department, Sharda Schools of Allied Health Sciences, Sharda University, Greater Noida, India
| | - Vandana Singh
- Department of Microbiology, Sharda Schools of Allied Health Sciences, Sharda University, Greater Noida, India
| | - Bushra Shaida
- Department of Nutrition, Jamia Hamdard University, New Delhi, India
| | - Saleem Siddiqui
- Department of Food Science and Technology, Sharda School of Basic Sciences, Sharda University, Greater Noida, India
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA
| | | |
Collapse
|
3
|
Papun B, Wongputtisin P, Kanpiengjai A, Pisithkul T, Manochai P, Manowan K, Atsaneechantra A, Chomsri NO. Fermentative Characteristics and Metabolic Profiles of Japanese Apricot Juice Fermented with Lactobacillus acidophilus and Torulaspora delbrueckii. Foods 2024; 13:3455. [PMID: 39517240 PMCID: PMC11544973 DOI: 10.3390/foods13213455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Functional fermented fruit juices produced using a combination of non-Saccharomyces yeast and lactic acid bacteria (LAB) are relatively unexplored. The effects of three inoculation protocols, single inoculation with Lactobacillus acidophilus (La), single inoculation with Torulaspora delbrueckii (Td), and co-culture of both La + Td, on the physicochemical, microbiological, sensory properties, and metabolic profile of fermented JA juices after 24 h at 30 °C were investigated. Uninoculated (UI) Japanese apricot (JA) juice was used as a control. The results show significant increases in the color intensity of the fermented-JA juices, whereas an enhancement of total phenolic contents is observed in the fermented JA-juices acquired through the use of La for both single and co-culture inoculations. The colony counts of LAB and yeast in the inoculated JA juices increased by approximately 2.0 and 1.7 log CFU/mL at 24 h, respectively. The antibacterial activity of JA juices against four pathogenic bacteria was detected. All JA juices exhibited antimicrobial activity against the tested pathogenic strains, with strong antibacterial properties of La-fermented juice being recorded against Bacillus cereus at the lowest MIC of 124 µL/mL. Additionally, La + Td-fermented and UI-JA juices demonstrated comparable anticancer activity against HT-29 cells with IC50 values of 823.37 and 754.87 µg/mL, respectively. Furthermore, a total of 995 compounds was identified as differential fermentation metabolites through non-targeted metabolome analysis across different fermentation groups. These findings illustrate the significant potential of using JA juice for La and Td fermentation to develop functional juices.
Collapse
Affiliation(s)
- Benjawan Papun
- Agricultural Technology Research Institute, Rajamangala University of Technology Lanna, Lampang 52000, Thailand (P.M.)
| | - Pairote Wongputtisin
- Program in Biotechnology, Faculty of Science, Maejo University, Sansai, Chiang Mai 50290, Thailand; (P.W.); (T.P.)
| | - Apinun Kanpiengjai
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Tippapha Pisithkul
- Program in Biotechnology, Faculty of Science, Maejo University, Sansai, Chiang Mai 50290, Thailand; (P.W.); (T.P.)
| | - Phayungsak Manochai
- Agricultural Technology Research Institute, Rajamangala University of Technology Lanna, Lampang 52000, Thailand (P.M.)
| | - Kamonwan Manowan
- Agricultural Technology Research Institute, Rajamangala University of Technology Lanna, Lampang 52000, Thailand (P.M.)
| | - Anong Atsaneechantra
- Agricultural Technology Research Institute, Rajamangala University of Technology Lanna, Lampang 52000, Thailand (P.M.)
| | - Ni-orn Chomsri
- Agricultural Technology Research Institute, Rajamangala University of Technology Lanna, Lampang 52000, Thailand (P.M.)
| |
Collapse
|
4
|
Saud S, Xiaojuan T, Fahad S. The consequences of fermentation metabolism on the qualitative qualities and biological activity of fermented fruit and vegetable juices. Food Chem X 2024; 21:101209. [PMID: 38384684 PMCID: PMC10878862 DOI: 10.1016/j.fochx.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Fermentation of fruit and vegetable juices with probiotics is a novel nutritional approach with potential health benefits. Lactic acid fermentation-based biotransformation results in changes in the profile and nature of bioactive compounds and improves the organoleptic properties, shelf life and bioavailability of vitamins and minerals in the fermented juices. This process has been shown to enrich the phenolic profile and bioactivity components of the juices, resulting in a new type of functional food with improved health benefits. Fruits and vegetables are the ideal substrate for microbial growth, and fruit and vegetable juice will produce rich nutrients and a variety of functional activities after fermentation, so that the high-quality utilization of fruits and vegetables is realized, and the future fermented fruit and vegetable juice products have a wide application market. This paper explores the typical fermentation methods for fruit and vegetable juices, investigates the bioactive components, functional activities, and the influence of fermentation on enhancing the quality of fruit and vegetable juices. The insights derived from this study carry significant implications for guiding the development of fermented fruit and vegetable juice industry.
Collapse
Affiliation(s)
- Shah Saud
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Tang Xiaojuan
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Pakistan
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
5
|
Plessas S, Mantzourani I, Terpou A, Bekatorou A. Assessment of the Physicochemical, Antioxidant, Microbial, and Sensory Attributes of Yogurt-Style Products Enriched with Probiotic-Fermented Aronia melanocarpa Berry Juice. Foods 2023; 13:111. [PMID: 38201137 PMCID: PMC10778934 DOI: 10.3390/foods13010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The aim() of this study was to create() various formulations of yogurt enriched with freeze()-dried adjuncts, namely() (i) probiotic Lactobacillus plantarum ATCC 14917 culture(), and (ii) L. plantarum ATCC 14917 fermented black chokeberry juice, along with a commercial() starter culture(). The goal was to enhance() functionality and optimize the nutritional() value() of the products. These new yogurt-style() formulations were subsequently() compared with commercially produced yogurt. All products demonstrated() favorable() physicochemical properties, and the probiotic strain() consistently() maintained viable() levels exceeding 7 log() cfu/g throughout() the entire() storage() period(). The fermented milk produced with the adjunct-free L. plantarum cells, as well as the yogurt produced with the proposed() lactobacilli-fermented chokeberry juice, exhibited the highest lactic acid() production() (1.44 g/100 g yogurt by the end of storage()). Levels of syneresis were observed at lower() values() in yogurt produced with freeze()-dried fermented chokeberry juice. Yogurts prepared() with the lactobacilli-fermented freeze()-dried chokeberry juice displayed elevated total() phenolic content() and antioxidant capacity() (25.74 µg GAE/g and 69.05 µmol TE/100 g, respectively()). Furthermore, sensory tests revealed a distinctive() fruity flavor() in samples incorporating fermented juice. The results demonstrate() that probiotic L. plantarum-fermented chokeberry juice enhances() both the antioxidant capacity() and the viability of beneficial() bacteria() in yogurt while it can be readily() applied and commercialized, especially in the form of a freeze()-dried formulation.
Collapse
Affiliation(s)
- Stavros Plessas
- Laboratory of Food Processing, Faculty of Agriculture Development, Democritus University of Thrace, 193 Pantazidou Str., 68200 Orestiada, Greece;
| | - Ioanna Mantzourani
- Laboratory of Food Processing, Faculty of Agriculture Development, Democritus University of Thrace, 193 Pantazidou Str., 68200 Orestiada, Greece;
| | - Antonia Terpou
- Department of Agricultural Development, Agri-Food, and Natural Resources Management, School of Agricultural Development, Nutrition & Sustainability, National and Kapodistrian University of Athens, Evripos Campus, 34400 Evia, Greece
| | - Argyro Bekatorou
- Department of Chemistry, University of Patras, 26504 Patras, Greece;
| |
Collapse
|
6
|
Plessas S, Mantzourani I, Alexopoulos A, Alexandri M, Kopsahelis N, Adamopoulou V, Bekatorou A. Nutritional Improvements of Sourdough Breads Made with Freeze-Dried Functional Adjuncts Based on Probiotic Lactiplantibacillus plantarum subsp. plantarum and Pomegranate Juice. Antioxidants (Basel) 2023; 12:1113. [PMID: 37237979 PMCID: PMC10215117 DOI: 10.3390/antiox12051113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
New types of sourdough breads are proposed, made with freeze-dried sourdough adjuncts based on: (i) Lactiplantibacillus plantarum subsp. plantarum ATCC 14917, a potential probiotic (LP) alone or (ii) with the addition of unfermented pomegranate juice (LPPO) and (iii) pomegranate juice fermented by the same strain (POLP). Physicochemical, microbiological, and nutritional characteristics (in vitro antioxidant capacity, AC, total phenolics, TPC, and phytate content) of the breads were evaluated and compared with commercial sourdough bread. All adjuncts performed well; the best results being those obtained by POLP. Specifically, the highest acidity (9.95 mL of 0.1 M NaOH) and organic acid content (3.02 and 0.95 g/kg, lactic and acetic acid, respectively) as well as better resistance to mold and rope spoilage (12 and 13 days, respectively) were observed for POLP3 bread (sourdough with 6% POLP). Significant nutritional improvements were observed by all adjuncts, in terms of TPC, AC, and phytate reduction (103 mg gallic acid/100 g, 232 mg Trolox/100 g, and 90.2%, respectively, for POLP3). In all cases, the higher the amount of adjunct, the better the results. Finally, the good sensory properties of the products indicate the suitability of the proposed adjuncts for sourdough breadmaking, while their application in freeze-dried, powdered form can facilitate commercial application.
Collapse
Affiliation(s)
- Stavros Plessas
- Laboratory of Food Processing, Department of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Ioanna Mantzourani
- Laboratory of Food Processing, Department of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Athanasios Alexopoulos
- Laboratory of Food Biotechnology, Microbiology and Hygiene, Department of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Maria Alexandri
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece; (M.A.); (N.K.)
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece; (M.A.); (N.K.)
| | | | - Argyro Bekatorou
- Department of Chemistry, University of Patras, 26504 Patras, Greece;
| |
Collapse
|
7
|
Rubio-Castillo ÁE, Zamora-Gasga VM, Sánchez-Burgos JA, Ruiz-Valdiviezo VM, Montalvo-González E, Velázquez-Estrada RM, González-Córdova AF, Sáyago-Ayerdi SG. Gut metabolites produced during in vitro colonic fermentation of the indigestible fraction of a maize-based traditional Mexican fermented beverage, Tejuino. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100150. [PMID: 36483086 PMCID: PMC9723516 DOI: 10.1016/j.fochms.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/16/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Tejuino, is a Mexican fermented beverage prepared by germination-fermentation or nixtamalization-fermentation (artisanal and commercial mode respectively) of maize. The aim of this study was to evaluate the gut metabolites, volatile, and phenolic compounds (PC) produced by the indigestible fraction (IF) of Tejuino during an in vitro colonic fermentation. Twenty-six PC in the IF were identified; the hydroxycinnamic acids (30-40 %) were the most abundant. In the IF of Tejuino pyrogallol, and urolithins were identified. Some of the representative PC of maize as maysin derivatives (apimaysin and 3-methoxymaysin) (flavonoids). The quantification of acetic and butyric acid become notable after 6 h of the colonic fermentation of IF of Tejuino. Ninety-seven volatile compounds were found, and the PCA shows the predominant compounds as short chain fatty acids, esters of organic acids and indole derivatives. These results suggest that Tejuino could be an important source of metabolites with high biological value.
Collapse
Affiliation(s)
- Ángel Eduardo Rubio-Castillo
- Laboratorio Integral en Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico No. 2505, Col. Lagos del Country, CP 63175 Tepic, Nayarit, Mexico
| | - Víctor M. Zamora-Gasga
- Laboratorio Integral en Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico No. 2505, Col. Lagos del Country, CP 63175 Tepic, Nayarit, Mexico
| | - Jorge A. Sánchez-Burgos
- Laboratorio Integral en Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico No. 2505, Col. Lagos del Country, CP 63175 Tepic, Nayarit, Mexico
| | - Víctor M. Ruiz-Valdiviezo
- Laboratorio de Biología Molecular, Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana km 1080, CP 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Efigenia Montalvo-González
- Laboratorio Integral en Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico No. 2505, Col. Lagos del Country, CP 63175 Tepic, Nayarit, Mexico
| | - Rita M. Velázquez-Estrada
- Laboratorio Integral en Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico No. 2505, Col. Lagos del Country, CP 63175 Tepic, Nayarit, Mexico
| | - Aarón F. González-Córdova
- Laboratorio de Calidad, Autenticidad y Trazabilidad de los Alimentos, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, colonia La Victoria, CP 83304 Hermosillo, Sonora, Mexico
| | - Sonia G. Sáyago-Ayerdi
- Laboratorio Integral en Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico No. 2505, Col. Lagos del Country, CP 63175 Tepic, Nayarit, Mexico
| |
Collapse
|
8
|
The Rendering of Traditional Fermented Foods in Human Diet: Distribution of Health Benefits and Nutritional Benefits. FERMENTATION 2022. [DOI: 10.3390/fermentation8120751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Most fermented foods are based on the cultural preferences of different geographical areas and the heterogeneity of traditions from where they are produced. For instance, many consumers in Asian countries prefer fermented seafood, while consumers in Europe prefer fermented cereal and dairy food products. Even though the food industry has developed various novel techniques in order to produce novel foods (genetic modification, nanotechnology and other processing techniques), traditional foods still represent a significant proportion of the food industry, which has recently appeared to develop further. In addition, the progress in various developed analytical techniques has revealed new knowledge that documents and corroborates certain benefits of traditional foods, mostly regarding their nutritional and health benefits. In this context, the main target of this Special Issue is to deliver new data on how traditional foods exhibit their health-promoting properties and ameliorate the nutritional value of fermented food systems. In addition, the involvement of wild starter culture in the production of traditional foods is a subject area that must be highlighted.
Collapse
|
9
|
Kumar V, Naik B, Kumar A, Khanduri N, Rustagi S, Kumar S. Probiotics media: significance, challenges, and future perspective - a mini review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00098-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractThe health benefits associated with probiotics have increased their application in pharmaceutical formulations and functional food development. High production of probiotic biomass requires a cost-effective production method and nutrient media optimization. The biomass production of probiotics can be enhanced by optimizing growth parameters such as substrate, pH, incubation time, etc. For economical industrial production of probiotic biomass, it is required to design a new medium with low cost. Wastes from the food industries are promising components for the development of the low-cost medium. Industrial wastes such as cheese whey and corn steep liquor are excellent examples of reliable sources of nitrogen for the biomass production of probiotic bacteria. The increased yield of biomass reduced the cost of production. This review focuses on the importance of probiotic media for biomass production and its challenges.
Graphical Abstract
Collapse
|
10
|
Fruit Bioactive Compounds: Effect on Lactic Acid Bacteria and on Intestinal Microbiota. Food Res Int 2022; 161:111809. [DOI: 10.1016/j.foodres.2022.111809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
|
11
|
Valorization of Lactic Acid Fermentation of Pomegranate Juice by an Acid Tolerant and Potentially Probiotic LAB Isolated from Kefir Grains. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study describes the application of an acid tolerant and potentially probiotic L. paracasei SP3 strain, recently isolated from kefir grains, in the production of a novel functional beverage based on the fermentation of pomegranate juice. The fermentation ability of the novel strain was assessed during pomegranate juice fermentations at 30 °C for 24 h and storage at 4 °C for 4 weeks. Various parameters were assessed such as residual sugar, organic acid and alcohol levels, total phenolics content, antioxidant activity, astringency, cell viability, and consumer acceptance. Residual sugar was decreased by approximately 25%, while respectable amounts of lactic acid were determined (4.8 g/L) on the 28th day of storage, proving that the novel strain was effective at lactic acid fermentation. The concentration of ethanol was maintained at low levels (0.3–0.4 % v/v) and low levels of acetic acid were detected (0.6 g/L). The viability of L. paracasei SP3 cells retained high levels (>7 log cfu/mL), even by the 4th week. The total phenolic content (123.7–201.1 mg GAE/100 mL) and antioxidant activity (124.5–148.5 mgTE/100 mL) of fermented pomegranate juice were recorded at higher levels for all of the studied time periods compared to the non-fermented juice. The employment of the novel strain led to a significant reduction in the levels of hydrolysable tannins (42%) in the juice, reducing its astringency. The latter was further proven through sensorial tests, which reflected the amelioration of the sensorial features of the final product. It should be underlined that fruit juices as well as pomegranate juice comprised a very harsh food matrix for microorganisms to survive and ferment. Likewise, the L. paracasei SP3 strain showed a significant potential, because it was applied as a free culture, without the application of microencapsulation methods that are usually employed in these fermentations, leading to a product with possible functional properties and a high nutritive value.
Collapse
|