1
|
Kyawt YY, Aung M, Xu Y, Sun Z, Zhou Y, Zhu W, Padmakumar V, Tan Z, Cheng Y. Dynamic changes of rumen microbiota and serum metabolome revealed increases in meat quality and growth performances of sheep fed bio-fermented rice straw. J Anim Sci Biotechnol 2024; 15:34. [PMID: 38419130 PMCID: PMC10900626 DOI: 10.1186/s40104-023-00983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Providing high-quality roughage is crucial for improvement of ruminant production because it is an essential component of their feed. Our previous study showed that feeding bio-fermented rice straw (BF) improved the feed intake and weight gain of sheep. However, it remains unclear why feeding BF to sheep increased their feed intake and weight gain. Therefore, the purposes of this research were to investigate how the rumen microbiota and serum metabolome are dynamically changing after feeding BF, as well as how their changes influence the feed intake, digestibility, nutrient transport, meat quality and growth performances of sheep. Twelve growing Hu sheep were allocated into 3 groups: alfalfa hay fed group (AH: positive control), rice straw fed group (RS: negative control) and BF fed group (BF: treatment). Samples of rumen content, blood, rumen epithelium, muscle, feed offered and refusals were collected for the subsequent analysis. RESULTS Feeding BF changed the microbial community and rumen fermentation, particularly increasing (P < 0.05) relative abundance of Prevotella and propionate production, and decreasing (P < 0.05) enteric methane yield. The histomorphology (height, width, area and thickness) of rumen papillae and gene expression for carbohydrate transport (MCT1), tight junction (claudin-1, claudin-4), and cell proliferation (CDK4, Cyclin A2, Cyclin E1) were improved (P < 0.05) in sheep fed BF. Additionally, serum metabolome was also dynamically changed, which led to up-regulating (P < 0.05) the primary bile acid biosynthesis and biosynthesis of unsaturated fatty acid in sheep fed BF. As a result, the higher (P < 0.05) feed intake, digestibility, growth rate, feed efficiency, meat quality and mono-unsaturated fatty acid concentration in muscle, and the lower (P < 0.05) feed cost per kg of live weight were achieved by feeding BF. CONCLUSIONS Feeding BF improved the growth performances and meat quality of sheep and reduced their feed cost. Therefore, bio-fermentation of rice straw could be an innovative way for improving ruminant production with minimizing production costs.
Collapse
Affiliation(s)
- Yin Yin Kyawt
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Animal Nutrition, University of Veterinary Science, Nay Pyi Taw 15013, Myanmar
| | - Min Aung
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Animal Nutrition, University of Veterinary Science, Nay Pyi Taw 15013, Myanmar
| | - Yao Xu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhanying Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaqi Zhou
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | | | - Zhankun Tan
- College of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Zhao J, Zhao X, Gao J, Bai B, Niu J, Yang Y, Zhao G, Wang Z, Xu Z, Wang J, Cheng Y, Hao L. Ensiled diet improved the growth performance of Tibetan sheep by regulating the rumen microbial community and rumen epithelial morphology. J Anim Sci 2024; 102:skae173. [PMID: 38902909 PMCID: PMC11245705 DOI: 10.1093/jas/skae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024] Open
Abstract
The aim of this study was to investigate the effects of ensiled agricultural byproducts from Qinghai-Tibet plateau on growth performance, rumen microbiota, ruminal epithelium morphology, and nutrient transport-related gene expression in Tibetan sheep. Fourteen male Tibetan sheep were randomly assigned to one of two diets: an untreated diet (without silage inoculum, CON, n = 7) or an ensiled diet (with silage inoculum, ESD, n = 7). The total experimental period lasted for 84 d, including early 14 d as adaption period and remaining 70 d for data collection. The ESD increased average daily gain (P = 0.046), dry matter intake (P < 0.001), ammonia nitrogen (P = 0.045), microbial crude protein (P = 0.034), and total volatile fatty acids concentration (P < 0.001), and decreased ruminal pH value (P = 0.014). The proportion of propionate (P = 0.006) and the copy numbers of bacteria (P = 0.01) and protozoa (P = 0.002) were higher, while the proportion of acetate (P = 0.028) was lower in the sheep fed ESD compared to CON. Pyrosequencing of the 16S ribosomal RNA gene revealed that ESD increased the relative abundance of Firmicutes, Ruminococcus, Lachnospiraceae_AC2044_group, Lachnospiraceae_XPB1014_group, and Christensenellaceae_R-7_group in the rumen (P < 0.05), while decreased the relative abundance of Bacteroidota, Prevotellaceae_UCG-003, and Veillonellaceae_UCG-001 (P < 0.05). Analyses with PICRUSt2 and STAMP indicated that the propionate metabolism pathway was enriched in the sheep fed ESD (P = 0.026). The ESD increased the rumen papillae height (P = 0.012), density (P = 0.036), and surface area (P = 0.001), and improved the thickness of the total epithelia (P = 0.018), stratum corneum (P = 0.040), stratum granulosum (P = 0.042), and stratum spinosum and basale (P = 0.004). The relative mRNA expression of cyclin-dependent Kinase 2, CyclinA2, CyclinD2, zonula occludens-1, Occludin, monocarboxylate transporter isoform 1 (MCT1), MCT4, sodium/potassium pump, and sodium/hydrogen antiporter 3 were higher in the rumen epithelial of sheep fed ESD than CON (P < 0.05). Conversely, the relative mRNA expressions of Caspase 3 and B-cell lymphoma-2 were lower in the sheep fed ESD than CON (P < 0.05). In conclusion, compared with an untreated diet, feeding an ensiled diet altered the rumen microbial community, enhanced nutrient transport through rumen epithelium, and improved the growth performance of Tibetan sheep.
Collapse
Affiliation(s)
- Jian Zhao
- Laboratory of Gastrointestinal Microbiology, National Centre for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinsheng Zhao
- Qinghai University, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xi’ning 810016, China
| | - Jian Gao
- Laboratory of Gastrointestinal Microbiology, National Centre for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Binqiang Bai
- Qinghai University, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xi’ning 810016, China
| | - Jianzhang Niu
- Qinghai University, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xi’ning 810016, China
| | - Yingkui Yang
- Qinghai University, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xi’ning 810016, China
| | - Guojun Zhao
- Haibei Prefecture Agricultural and Animal Husbandry Product Quality and Safety Inspection and Testing Center, Qinghai Xihai 812200, China
| | - Zuojiang Wang
- Qinghai Qaidam Nongken Mohe Camel Farm Co., LTD, Mo He 817101, China
| | - Zhenhua Xu
- Qinghai Regenerative Nutrition Biotechnology Co., LTD, Hu Zhu 810599, China
| | - Jilong Wang
- Qinghai Regenerative Nutrition Biotechnology Co., LTD, Hu Zhu 810599, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Centre for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Lizhuang Hao
- Qinghai University, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xi’ning 810016, China
| |
Collapse
|
3
|
Meng Z, Yang C, Leng J, Zhu W, Cheng Y. Production, purification, characterization and application of two novel endoglucanases from buffalo rumen metagenome. J Anim Sci Biotechnol 2023; 14:16. [PMID: 36740711 PMCID: PMC9900955 DOI: 10.1186/s40104-022-00814-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/02/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lignocellulose biomass is the most abundant and renewable material in nature. The objectives of this study were to characterize two endoglucanases TrepCel3 and TrepCel4, and determine the effect of the combination of them (1.2 mg TrepCel3, 0.8 mg TrepCel4) on in vitro rumen fermentation characteristics. In this study, three nature lignocellulosic substrates (rice straw, RS; wheat straw, WS; leymus chinensis, LC) were evaluated for their in vitro digestibility, gas, NH3-N and volatile fatty acid (VFA) production, and microbial protein (MCP) synthesis by adding enzymatic combination. METHODS Two endoglucanases' genes were successfully expressed in Escherichia coli (E. coli) BL21 (DE3), and enzymatic characteristics were further characterized. The combination of TrepCel3 and TrepCel4 was incubated with lignocellulosic substrates to evaluate its hydrolysis ability. RESULTS The maximum enzymatic activity of TrepCel3 was determined at pH 5.0 and 40 °C, while TrepCel4 was at pH 6.0 and 50 °C. They were stable over the temperature range of 30 to 60 °C, and active within the pH range of 4.0 to 9.0. The TrepCel3 and TrepCel4 had the highest activity in lichenan 436.9 ± 8.30 and 377.6 ± 6.80 U/mg, respectively. The combination of TrepCel3 and TrepCel4 exhibited the highest efficiency at the ratio of 60:40. Compared to maximum hydrolysis of TrepCel3 or TrepCel4 separately, this combination was shown to have a superior ability to maximize the saccharification yield from lignocellulosic substrates up to 188.4% for RS, 236.7% for wheat straw WS, 222.4% for LC and 131.1% for sugar beet pulp (SBP). Supplemental this combination enhanced the dry matter digestion (DMD), gas, NH3-N and VFA production, and MCP synthesis during in vitro rumen fermentation. CONCLUSIONS The TrepCel3 and TrepCel4 exhibited the synergistic relationship (60:40) and significantly increased the saccharification yield of lignocellulosic substrates. The combination of them stimulated in vitro rumen fermentation of lignocellulosic substrates. This combination has the potential to be a feed additive to improve agricultural residues utilization in ruminants. If possible, in the future, experiments in vivo should be carried out to fully evaluate its effect.
Collapse
Affiliation(s)
- Zhenxiang Meng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research On Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengjian Yang
- Buffalo Research Institute, Chinese Academy of Agricultural, Nanning, 530000, China
| | - Jing Leng
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650000, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research On Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research On Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Mixed Fermentation of Lactiplantibacillus plantarum and Bacillus licheniformis Changed the Chemical Composition, Bacterial Community, and Rumen Degradation Rate of Tea Residue. FERMENTATION 2022. [DOI: 10.3390/fermentation8080380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tea residue, as a byproduct in tea processing, is highly nutritious and can be used as a good raw material for ruminant feed. This study aimed to investigate the effects of Lactiplantibacillus plantarum (L. plantarum) and Bacillus licheniformis (B. licheniformis) mixed fermentation of tea residue mixture (tea residue:wheat bran, 7:3) on chemical composition, bacterial community, and rumen degradation rate. Changes in chemical composition and bacterial community were evaluated after 0 (F0), 1 (F1), 3 (F3), and 5 (F5) days of fermentation. The rumen degradation rate was studied by the in situ nylon bag method. Compared with group F0, acid soluble protein in other groups increased while pH and neutral detergent fiber decreased (p < 0.05). The group F5 was the best. The diversity of bacterial communities in group F0 was significantly lower than those in the other groups (p < 0.05). The relative abundance of phylum Firmicutes and the genus Lactobacillus increased with increasing fermentation time. The rumen degradation rates of dry matter, crude protein, neutral detergent fiber, and acid detergent fiber were increased after fermentation. In conclusion, mixed fermentation of tea residue by L. plantarum and B. licheniformis can ameliorate chemical composition, reduce bacterial community diversity, and improve the rumen degradation rate.
Collapse
|