1
|
Yang Z, Zheng Y, Liu S, Xie T, Wang Q, Wang Z, Li S, Wang W. Rumen metagenome reveals the mechanism of mitigation methane emissions by unsaturated fatty acid while maintaining the performance of dairy cows. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:296-308. [PMID: 39281050 PMCID: PMC11402312 DOI: 10.1016/j.aninu.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 09/18/2024]
Abstract
Dietary fat content can reduce the methane production of dairy cows; however, the relevance fatty acid (FA) composition has towards this inhibitory effect is debatable. Furthermore, in-depth studies elucidating the effects of unsaturated fatty acids (UFA) on rumen function and the mechanism of reducing methane (CH4) production are lacking. This study exposed 10 Holstein cows with the same parity, similar milk yield to two total mixed rations: low unsaturated FA (LUFA) and high unsaturated FA (HUFA) with similar fat content. The LUFA group mainly added fat powder (C16:0 > 90%), and the HUFA group mainly replaced fat powder with extruded flaxseed. The experiment lasted 26 d, the last 5 d of which, gas exchange in respiratory chambers was conducted to measure gas emissions. We found that an increase in the UFA in diet did not affect milk production (P > 0.05) and could align the profile of milk FAs more closely with modern human nutritional requirements. Furthermore, we found that increasing the UFA content in the diet lead to a decrease in the abundance of Methanobrevibacter in the rumen (|linear discriminant analysis [LDA] score| > 2 and P < 0.05), which resulted in a decrease in the relative abundance of multiple enzymes (EC:1.2.7.12, EC:2.3.1.101, EC:3.5.4.27, EC:1.5.98.1, EC:1.5.98.2, EC:6.2.1.1, EC:2.1.1.86 and EC:2.8.4.1) during methanogenesis (P < 0.05). Compared with the LUFA group, the pathway of CH4 metabolism was inhibited in the HUFA group (|LDA| > 2 and P < 0.05), which ultimately decreased CH4 production (P < 0.05). Our results illustrated the mechanism involving decreased CH4 production when fed a UFA diet in dairy cows. We believe that our study provides new evidence to explore CH4 emission reduction measures for dairy cows.
Collapse
Affiliation(s)
- Zhantao Yang
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuhui Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siyuan Liu
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tian Xie
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qianqian Wang
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhonghan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Szuba-Trznadel A, Hikawczuk T, Jama-Rodzeńska A, Kamińska J, Svecnjak Z, Król Z, Fuchs B. Determining the Optimal Harvesting Moment of Green Forage from Guizotia abyssinica Cultivated as a Catch Crop on Silage and Its Quality Form, Fresh or Wilted Green Material, in the Two Following Years. Animals (Basel) 2024; 14:2455. [PMID: 39272241 PMCID: PMC11394326 DOI: 10.3390/ani14172455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Guizotia abyssinica is currently being used for soil improvement; however, owing to its rapid growth and high productivity, it may have value as feed for ruminants, although this has not been well studied. Thus, this research aimed to evaluate the silage quality of Guizotia abyssinica grown during the short season (July-October) as a catch crop in northern Europe when harvested 58, 68, and 90 days after sowing (DAS) over two production years. Ensiled material was analyzed to compare silage quality for the three different DAS. Two factors were analyzed factorially in the experiment: the silage preparation year (2018 or 2019) and the form of the ensiled material (fresh or wilted). We used 36 replications, 18 for each variant of the experimental factor. Harvesting at 58 DAS resulted in unsatisfactory forage fermentability, even after wilting. At 68 DAS, silage quality was satisfactory, but the dry matter content before ensiling was below 20% for both fresh and wilted forage, indicating limitations for silage use without additional wilting for that DAS harvest time. Dry matter content and water-soluble carbohydrates consistently increased as harvest was delayed. Thus, the highest silage quality was obtained from forage harvested 90 DAS regardless of differences in dry matter content. Therefore, it is possible to prepare silage at lower temperatures when the wilting process is limited by environmental conditions.
Collapse
Affiliation(s)
- Anna Szuba-Trznadel
- Department of Animal Nutrition and Feed Management, Wroclaw University of Environmental and Life Sciences, J. Chełmońskiego 38d, 51-630 Wrocław, Poland
| | - Tomasz Hikawczuk
- Statistical Analysis Centre, Wroclaw Medical University, K. Marcinkowskiego 1, 50-368 Wrocław, Poland
| | - Anna Jama-Rodzeńska
- Institute of Agroecology and Plant Production, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 24A, 50-363 Wrocław, Poland
| | - Joanna Kamińska
- Department of Applied Mathematics, Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences, 50-363 Wroclaw, Poland
| | - Zlatko Svecnjak
- Department of Filed Crops, Forage and Grasslands, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Zygmunt Król
- Saatbau Poland Sp. z o.o., Żytnia 1, 55-300 Środa Śląska, Poland
| | - Bogusław Fuchs
- Department of Animal Nutrition and Feed Management, Wroclaw University of Environmental and Life Sciences, J. Chełmońskiego 38d, 51-630 Wrocław, Poland
| |
Collapse
|
3
|
Wang H, Liu G, Zhou A, Yang H, Kang K, Ahmed S, Li B, Farooq U, Hou F, Wang C, Bai X, Chen Y, Ding Y, Jiang X. Effects of yeast culture on in vitro ruminal fermentation and microbial community of high concentrate diet in sheep. AMB Express 2024; 14:37. [PMID: 38622373 PMCID: PMC11018729 DOI: 10.1186/s13568-024-01692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/17/2024] [Indexed: 04/17/2024] Open
Abstract
This research aimed to investigate effects of different yeast culture (YC) levels on in vitro fermentation characteristics and bacterial and fungal community under high concentrate diet. A total of 5 groups were included in the experiment: control group without YC (CON), YC1 (0.5% YC proportion of substrate dry matter), YC2 (1%), YC3 (1.5%) and YC4 (2%). After 48 h of fermentation, the incubation fluids and residues were collected to analyze the ruminal fermentation parameters and bacterial and fungal community. Results showed that the ruminal fluid pH of YC2 and YC4 groups was higher (P < 0.05) than that of CON group. Compared with CON group, the microbial protein, propionate and butyrate concentrations and cumulative gas production at 48 h of YC2 group were significantly increased (P < 0.05), whereas an opposite trend of ammonia nitrogen and lactate was observed between two groups. Microbial analysis showed that the Chao1 and Shannon indexes of YC2 group were higher (P < 0.05) than those of CON group. Additionally, YC supplementation significantly decreased (P < 0.05) Succinivibrionaceae_UCG-001, Streptococcus bovis and Neosetophoma relative abundances. An opposite tendency of Aspergillus abundance was found between CON and YC treatments. Compared with CON group, the relative abundances of Prevotella, Succiniclasticum, Butyrivibrio and Megasphaera elsdenii were significantly increased (P < 0.05) in YC2 group, while Apiotrichum and unclassified Clostridiales relative abundances were decreased (P < 0.05). In conclusion, high concentrate substrate supplemented with appropriate YC (1%) can improve ruminal fermentation and regulate bacterial and fungal composition.
Collapse
Affiliation(s)
- Hongze Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- National key Laboratory for Exploitation and Utilization of Agricultural Microbial Resources, Yichang, 443003, China
| | - Guiqiong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aimin Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Mianyang Academy of Agricultural Sciences, Mianyang, 621023, China
| | - Huiguo Yang
- Institute of Animal Husbandry, Xinjiang Academy of Animal Sciences, Urumqi, 830013, China
| | - Kun Kang
- National key Laboratory for Exploitation and Utilization of Agricultural Microbial Resources, Yichang, 443003, China
| | - Sohail Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Biao Li
- National key Laboratory for Exploitation and Utilization of Agricultural Microbial Resources, Yichang, 443003, China
| | - Umar Farooq
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuqing Hou
- National Sheep Industry Technology System Shihezi Comprehensive Experimental Station, Shihezi, 832000, China
| | - Chaoli Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- National Sheep Industry Technology System Shihezi Comprehensive Experimental Station, Shihezi, 832000, China
| | - Xue Bai
- National Sheep Industry Technology System Shihezi Comprehensive Experimental Station, Shihezi, 832000, China
| | - Yan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Animal Husbandry, Xinjiang Academy of Animal Sciences, Urumqi, 830013, China
- National Sheep Industry Technology System Shihezi Comprehensive Experimental Station, Shihezi, 832000, China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Animal Husbandry, Xinjiang Academy of Animal Sciences, Urumqi, 830013, China.
- National Sheep Industry Technology System Shihezi Comprehensive Experimental Station, Shihezi, 832000, China.
| |
Collapse
|
4
|
Lester RE, Macqueen A, Armstrong EK, Dodemaide DT, Dwyer GK, Mock TS, Payne S, Smith M, Storen M, Webb L. Can freshwater plants and algae act as an effective feed supplement to reduce methane emissions from ruminant livestock? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169296. [PMID: 38104811 DOI: 10.1016/j.scitotenv.2023.169296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Methane production by livestock is a substantial component of greenhouse gas emissions worldwide. The marine red algae, Asparagopsis taxiformis, has been identified as a possible supplement in livestock feeds due to its potent inhibition of methane production but currently is unable to be produced at scale. Finding additional taxa that inhibit methane production is therefore desirable. Here we provide foundational evidence of methanogenesis-inhibiting properties in Australian freshwater plants and algae, reviewing candidate species and testing species' chemical composition and efficacy in vitro. Candidate plant species and naturally-occurring algal mixes were collected and assessed for ability to reduce methane in batch testing and characterised for biochemical composition, lipids and fatty acids, minerals and DNA. We identified three algal mixes and one plant (Montia australasica) with potential to reduce methane yield in in vitro batch assay trials. All three algal mixes contained Spirogyra, although additional testing would be needed to confirm this alga was responsible for the observed activity. For the two samples that underwent multiple dose testing, Algal mix 1 (predominantly Spirogyra maxima) and M. australasica, there seems to be an optimum dose but sources, harvesting and storage conditions potentially determine their methanogenesis-inhibiting activity. Based on their compositions, fatty acids are likely to be acting to reduce methane in Algal mix 1 while M. australasica likely contains substantial amounts of the flavonoids apigenin and kaempferol, which are associated with methane reduction. Based on their mineral composition, the samples tested would be safe for livestock consumption at an inclusion rate of 20%. Thus, we identified multiple Australian species that have potential to be used as a feed supplement to reduce methane yield in livestock which may be suitable for individual farmers to grow and feed, reducing complexities of supply associated with marine alternatives and suggesting avenues for investigation for similar species elsewhere.
Collapse
Affiliation(s)
- Rebecca E Lester
- Centre for Regional and Rural Futures, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia.
| | - Ashley Macqueen
- Centre for Regional and Rural Futures, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Emily K Armstrong
- Centre for Regional and Rural Futures, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - David T Dodemaide
- Centre for Regional and Rural Futures, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Georgia K Dwyer
- Centre for Regional and Rural Futures, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Thomas S Mock
- Nutrition and Seafood Laboratory, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Stephanie Payne
- School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Michael Smith
- Centre for Regional and Rural Futures, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Michaela Storen
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Lawrence Webb
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia
| |
Collapse
|
5
|
Kara K, Yilmaz S, Güçlü BK, Demir S. In vitro ruminal fermentation, core nutrient, fatty acids and mineral matter of pennyroyal (Mentha pulegium L.) herbage at different phenological stages. Vet Med Sci 2024; 10:e1397. [PMID: 38450960 PMCID: PMC10918986 DOI: 10.1002/vms3.1397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND In ruminants, fibrous feedstuffs must be included in the ration to ensure normal rumen physiology and to prevent the occurrence of rumen-related metabolic diseases. In addition to being a source of fibrous feedstuffs, they contain energy depending on the level of digestion and protein, minerals, fatty acids, minerals, and secondary compounds. OBJECTIVES This study aimed to determine the nutrient matter, fatty acid, mineral and in vitro rumen fermentation values of the pennyroyal (Mentha pulegium L.) plant. METHODS The pennyroyal plant samples were collected at different phenological stages (vegetative, full flowering, and seed bulking) from the natural meadow. The samples were analysed for core nutrients, condensed tannins, minerals, fatty acids, and in vitro ruminal fermentation parameters. RESULTS The calcium (Ca) and iron (Fe) contents and in vitro ruminal fermentation parameters (total gas production and methane production, organic matter digestion (OMd), and the ammonia-nitrogen) decreased with increasing phenological stage (p < 0.05). The percentages of linoleic, α-linolenic, ω-3, ω-6 and polyunsaturated fatty (PUFA) acids of the pennyroyal plant linearly increased with the phenological stages (p < 0.05). However, butyric acid (BA) concentration in the in vitro ruminal fermentation fluid in the full flowering stage was lower than that of other stages (p < 0.05). CONCLUSIONS Pennyroyal plant is a functional plant in terms of high values of ether extract (EE), α-linolenic acid, linoleic acid, ∑ω-3 fatty acids, Ca, Fe and Zn contents. For this plant to be used as animal feed, the stage when it has the highest values for Ca, Mg, S and Zn minerals and in vitro OMd were vegetative and full flowering. The stage with good potential as animal feed for ∑ω-3 and ∑ω-6 fatty acids and core nutrients (CP and EE) is the seed bulking stage.
Collapse
Affiliation(s)
- Kanber Kara
- Faculty of Veterinary MedicineDepartment of Animal Nutrition and Nutritional Diseases, Erciyes UniversityKayseriTürkiye
| | - Sena Yilmaz
- Faculty of Veterinary MedicineDepartment of Animal Nutrition and Nutritional Diseases, Erciyes UniversityKayseriTürkiye
| | - Berrin Kocaoğlu Güçlü
- Faculty of Veterinary MedicineDepartment of Animal Nutrition and Nutritional Diseases, Erciyes UniversityKayseriTürkiye
| | - Seyrani Demir
- Faculty of Veterinary MedicineDepartment of Animal Nutrition and Nutritional Diseases, Erciyes UniversityKayseriTürkiye
| |
Collapse
|
6
|
Donadia AB, Torres RNS, da Silva HM, Soares SR, Hoshide AK, de Oliveira AS. Factors Affecting Enteric Emission Methane and Predictive Models for Dairy Cows. Animals (Basel) 2023; 13:1857. [PMID: 37889787 PMCID: PMC10252078 DOI: 10.3390/ani13111857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 10/29/2023] Open
Abstract
Enteric methane emission is the main source of greenhouse gas contribution from dairy cattle. Therefore, it is essential to evaluate drivers and develop more accurate predictive models for such emissions. In this study, we built a large and intercontinental experimental dataset to: (1) explain the effect of enteric methane emission yield (g methane/kg diet intake) and feed conversion (kg diet intake/kg milk yield) on enteric methane emission intensity (g methane/kg milk yield); (2) develop six models for predicting enteric methane emissions (g/cow/day) using animal, diet, and dry matter intake as inputs; and to (3) compare these 6 models with 43 models from the literature. Feed conversion contributed more to enteric methane emission (EME) intensity than EME yield. Increasing the milk yield reduced EME intensity, due more to feed conversion enhancement rather than EME yield. Our models predicted methane emissions better than most external models, with the exception of only two other models which had similar adequacy. Improved productivity of dairy cows reduces emission intensity by enhancing feed conversion. Improvement in feed conversion should be prioritized for reducing methane emissions in dairy cattle systems.
Collapse
Affiliation(s)
- Andrea Beltrani Donadia
- Dairy Cattle Research Laboratory, Universidade Federal de Mato Grosso, Campus Sinop, Sinop 78555-267, MG, Brazil; (A.B.D.)
| | - Rodrigo Nazaré Santos Torres
- Dairy Cattle Research Laboratory, Universidade Federal de Mato Grosso, Campus Sinop, Sinop 78555-267, MG, Brazil; (A.B.D.)
| | - Henrique Melo da Silva
- Dairy Cattle Research Laboratory, Universidade Federal de Mato Grosso, Campus Sinop, Sinop 78555-267, MG, Brazil; (A.B.D.)
| | - Suziane Rodrigues Soares
- Dairy Cattle Research Laboratory, Universidade Federal de Mato Grosso, Campus Sinop, Sinop 78555-267, MG, Brazil; (A.B.D.)
| | - Aaron Kinyu Hoshide
- College of Natural Sciences, Forestry, and Agriculture, The University of Maine, Orono, ME 04469-5782, USA;
- AgriSciences, Universidade Federal de Mato Grosso, Campus Sinop, Sinop 78555-267, MG, Brazil
| | - André Soares de Oliveira
- Dairy Cattle Research Laboratory, Universidade Federal de Mato Grosso, Campus Sinop, Sinop 78555-267, MG, Brazil; (A.B.D.)
| |
Collapse
|
7
|
Bai H, Zhang M, Zhao Y, Wang R, Zhang G, Lambo MT, Zhang Y, Li Y, Wang L. Altering the ratio of palmitic, stearic, and oleic acids in dietary fat affects nutrient digestibility, plasma metabolites, growth performance, carcass, meat quality, and lipid metabolism gene expression of Angus bulls. Meat Sci 2023; 199:109138. [PMID: 36796287 DOI: 10.1016/j.meatsci.2023.109138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
This study evaluated the effects of changing the ratio of palmitic, stearic, and oleic acids in dietary fat on nutritional metabolism, growth performance, and meat quality of finishing Angus bulls. Bulls received the following three treatments: (1) a control diet without fat supplement (CON), (2) CON + mixed fatty acid supplement (58% C16:0 + 28% cis-9 C18:1; MIX), (3) CON + saturated fatty acid supplement (87% C16:0 + 10% C18:0; SFA). In summary, both fat treatment diets simultaneously increased saturated fatty acids C16:0 (P = 0.025), C18:0 (P < 0.001) and total monounsaturated fatty acids (P = 0.008) in muscle, thus balancing the ratio of unsaturated to saturated fatty acids in muscle. MIX diet increased the digestibility of dry matter (P = 0.014), crude protein (P = 0.038), and ether extract (P = 0.036). SFA diet increased the daily gain (P = 0.032) and intramuscular fat content (P = 0.043). The high content of C16:0 and C18:0 in the SFA diet promoted weight gain and fat deposition of beef cattle by increasing feed intake, up-regulating the expression of lipid uptake genes and increasing deposition of total fatty acids, resulting in better growth performance and meat quality.
Collapse
Affiliation(s)
- Haixin Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Meimei Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yufan Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Ruixue Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guangning Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Liang Wang
- Research Institute of Applied Technologies, Honghe University, Mengzi 661199, China.
| |
Collapse
|
8
|
Effect of Unsaturated Fatty Acid Ratio In Vitro on Rumen Fermentation, Methane Concentration, and Microbial Profile. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It is well known that dairy cows are fed diets with high fat content, which can adversely affect rumen fermentation. However, whether the effects of high fat content on rumen fermentation are related to the composition of fatty acids (FA) is for further study. We explored the effects of unsaturated fatty acid (UFA) ratios in vitro on rumen, methane concentration and microbial composition under the same fat levels. The experiment included a low-unsaturated group (LU, UFA proportion: 42.8%), a medium-unsaturated group (MU, UFA proportion: 56.9%), and a high-unsaturated group (HU, UFA proportion: 70.9%). The incubation fluid pH and NH3-N levels were not significantly different in the three groups. Total volatile fatty acid (TVFA), acetate, propionate, butyrate, and valerate in the MU group had a decreased trend compared to the LU group (0.05 < p < 0.1), and no difference was found in other volatile fatty acids (VFAs) among the three groups. Furthermore, gas production kinetic parameters among the three groups did not differ significantly. The LU group’s CH4 concentration was significantly higher than the HU group (p < 0.05). The CO2 concentration in the LU group was also significantly higher than the MU and LU groups (p < 0.05). Additionally, 16S rRNA microbial sequencing results showed that the Shannon diversity value significantly increased in the MU group (p < 0.05) compared to the LU group. Other alpha diversity indices (Chao 1, observed species, and ACE) did not differ among the three groups. The increased proportion of UFA significantly decreased the relative abundance of Succinivibrionaceae_UCG_001 and Fibrobacter (p < 0.05). Meanwhile, the multiple Lachnospiraceae bacteria significantly increased in the MU group (p < 0.05). Overall, our findings indicated that the microbial community in the incubation system could be affected by elevating proportions of UFA, affecting the yield of VFA, whereas the CH4 concentration was reduced.
Collapse
|
9
|
Correlation of Ruminal Fermentation Parameters and Rumen Bacterial Community by Comparing Those of the Goat, Sheep, and Cow In Vitro. FERMENTATION 2022. [DOI: 10.3390/fermentation8090427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, we aimed to establish the correlation between ruminal fermentation parameters and the bacterial community by comparing those of the goat, sheep, and cow, thus illustrating the main bacteria causing the difference in rumen fermentation among goats, sheep, and cows and providing a new idea for improving the feed digestibility of ruminants. Rumen fluid from goats (Taihang White cashmere goat, n = 6), sheep (Hu sheep, n = 6), and cows (Holstein cow, n = 6) was collected using oral intubation and immediately brought back to the laboratory for a fermentation test with the same total mixed ration (TMR) feed in vitro. The rumen bacterial composition was measured by high-throughput sequencing of 16S rRNA genes in the MiSeq platform, the gas production (GP) was recorded after 2, 4, 6, 8, 10, 12, 24, 36, and 48 h of fermentation, and the feed nutrient digestibility and the rumen fluid parameters were determined after 48 h of fermentation. The results showed that the 48 h GP of the sheep group was higher than that of the cow group (p < 0.05), and the theoretical maximum GP was higher than that of the goat and cow groups (p < 0.05). The organic matter digestibility (OMD), dry matter digestibility (DMD), crude protein digestibility (CPD), and gross energy digestibility (GED) of the sheep group were higher than those of the goat and cow groups (p < 0.05). The ammonia nitrogen (NH3-N), microbial protein (MCP), and total volatile fatty acids (TVFA) concentrations of the sheep group were higher than those of the other groups (p < 0.05), and the pH of the sheep group was lower than those of the other groups (p < 0.05). The 16S rRNA gene sequencing revealed that bacterial composition also differed in the rumens of the sheep, goat, and cow groups (ANOSIM, p < 0.05). We then used a random forest machine learning algorithm to establish models to predict the fermentation parameters by rumen bacterial composition, and the results showed that rumen bacterial composition could explain most of the ruminal fermentation parameter variation (66.56%, 56.13%, 65.75%, 80.85%, 61.30%, 4.59%, 1.41%, −3.13%, 34.76%, −25.62%, 2.73%, 60.74%, 76.23%, 47.48%, −13.2%, 80.16%, 4.15%, 69.03%, 32.29%, and 89.96% for 48 h GP, a (GP of quickly degraded part), b (GP of slowly degraded part), c (GP rate), a + b (theoretical maximum GP), DMD, OMD, GED, CPD, NDFD, ANDF, pH, NH3-N, MCP, acetic acid, propionic acid, butyric acid, valeric acid, TVFA, and A:P (acetic acid–propionic acid ratio), respectively). A correlation analysis revealed that Lactobacillus, Prevotellaceae_UCG-003, Selenomonas, Peptostreptococcus, and Olsenella significantly correlated with most in vitro fermentation parameters (p < 0.05). A comprehensive analysis showed that rumen fermentation parameters and bacterial composition differed in goats, sheep, and cows. The ruminal fermentation parameters of GP, a, b, c, a + b, pH, NH3-N, propionic acid, valeric acid, and A:P could be accurately predicted by rumen bacteria (explanation > 55% of variation), and the Lactobacillus, Prevotellaceae_UCG-003, Olsenella, Selenomonas, and Peptostreptococcus were the main bacteria that affected the in vitro fermentation parameters of goats, sheep, and cows.
Collapse
|