1
|
Suchithra KV, Hameed A, Surya S, Mahammad S, Arun AB. Dual phage-incorporated electrospun polyvinyl alcohol-eudragit nanofiber matrix for rapid healing of diabetic wound infected by Pseudomonas aeruginosa and Staphylococcus aureus. Drug Deliv Transl Res 2025; 15:1092-1108. [PMID: 38980574 DOI: 10.1007/s13346-024-01660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
Diabetic wound healing remains a healthcare challenge due to co-occurring multidrug-resistant (MDR) bacterial infections and the constraints associated with sustained drug delivery. Here, we integrate two new species of phages designated as PseuPha1 and RuSa1 respectively lysing multiple clinical MDR strains of P. aeruginosa and S. aureus into a novel polyvinyl alcohol-eudragit (PVA-EU†) nanofiber matrix through electrospinning for rapid diabetic wound healing. PVA-EU† evaluated for characteristic changes that occurred due to electrospinning and subjected to elution, stability and antibacterial assays. The biocompatibility and wound healing ability of PVA-EU† were assessed through mouse fibroblast cell line NIH3T3, followed by validation through diabetic mice excision wound co-infected with P. aeruginosa and S. aureus. The electrospinning resulted in the incorporation of ~ 75% active phages at PVA-EU†, which were stable at 25 °C for 30 days and at 4 °C for 90 days. PVA-EU† showed sustained release of phages for 18 h and confirmed to be detrimental to both mono- and mixed-cultures of target pathogens. The antibacterial activity of PVA-EU† remained unaltered in the presence of high amounts of glucose, whereas alkaline pH promoted the activity. The matrix exerted no cytotoxicity on NIH3T3, but showed significant (p < 0.0001) wound healing in vitro and the process was rapid as validated through a diabetic mice model. The sustained release, quick wound closure, declined abundance of target MDR bacteria in situ and histopathological signs of recovery corroborated the therapeutic efficacy of PVA-EU†. Taken together, our data signify the potential application of PVA-EU† in the rapid treatment of diabetic wounds without the aid of antibiotics.
Collapse
Affiliation(s)
- Kokkarambath Vannadil Suchithra
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore-575018, India
| | - Asif Hameed
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore-575018, India.
| | - Suprith Surya
- Advanced Surgical Skill Enhancement Division (ASSEND), Yenepoya (Deemed to Be University), Deralakatte, Mangalore-575018, India
| | - Sajida Mahammad
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore-575018, India
| | - Ananthapadmanabha Bhagwath Arun
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore-575018, India.
- Yenepoya Institute of Arts, Science, Commerce and Management, Balmatta, Mangalore-575002, India.
| |
Collapse
|
2
|
Selim HMRM, Gomaa FAM, Alshahrani MY, Morgan RN, Aboshanab KM. Phage therapeutic delivery methods and clinical trials for combating clinically relevant pathogens. Ther Deliv 2024:1-23. [PMID: 39545771 DOI: 10.1080/20415990.2024.2426824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
The ongoing global health crisis caused by multidrug-resistant (MDR) bacteria necessitates quick interventions to introduce new management strategies for MDR-associated infections and antimicrobial agents' resistance. Phage therapy emerges as an antibiotic substitute for its high specificity, efficacy, and safety profiles in treating MDR-associated infections. Various in vitro and in vivo studies denoted their eminent bactericidal and anti-biofilm potential. This review addresses the latest developments in phage therapy regarding their attack strategies, formulations, and administration routes. It additionally discusses and elaborates on the status of phage therapy undergoing clinical trials, and the challenges encountered in their usage, and explores prospects in phage therapy research and application.
Collapse
Affiliation(s)
- Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| | - Fatma Alzahraa M Gomaa
- Department of Pharmacognosy and Medicinal Herbs, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Radwa N Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University Technology MARA (UiTM), Bandar Puncak Alam, Malaysia
| |
Collapse
|
3
|
Mohan N, Bosco K, Peter A, Abhitha K, Bhat SG. Bacteriophage entrapment strategies for the treatment of chronic wound infections: a comprehensive review. Arch Microbiol 2024; 206:443. [PMID: 39443305 DOI: 10.1007/s00203-024-04168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
The growing threat of antimicrobial resistance has made the quest for antibiotic alternatives or synergists one of the most pressing priorities of the 21st century. The emergence of multidrug-resistance in most of the common wound pathogens has amplified the risk of antibiotic-resistant wound infections. Bacteriophages, with their self-replicating ability and targeted specificity, can act as suitable antibiotic alternatives. Nevertheless, targeted delivery of phages to infection sites remains a crucial issue, specifically in the case of topical infections. Hence, different phage delivery systems have been studied in recent years. However, there have been no recent reviews of phage delivery systems focusing exclusively on phage application on wounds. This review provides a compendium of all the major delivery systems that have been used to deliver phages to wound infection sites. Special focus has also been awarded to phage-embedded hydrogels with a discussion on the different aspects to be considered during their preparation.
Collapse
Affiliation(s)
- Nivedya Mohan
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - Kiran Bosco
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Center for Infectious Diseases and Microbiology, Westmead, NSW, Australia
| | - Anmiya Peter
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - K Abhitha
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India.
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India.
| |
Collapse
|
4
|
Subramanian A. Emerging roles of bacteriophage-based therapeutics in combating antibiotic resistance. Front Microbiol 2024; 15:1384164. [PMID: 39035437 PMCID: PMC11257900 DOI: 10.3389/fmicb.2024.1384164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/06/2024] [Indexed: 07/23/2024] Open
Abstract
Amid the growing challenge of antibiotic resistance on a global scale, there has been a notable resurgence in bacteriophage-based treatments, signaling a shift in our approach to managing infections. Bacteriophages (BPs), bacterial predators of nature, present a promising alternative for tackling infections caused by antibiotic-resistant pathogens. This review delves into the intricate relationship between bacteriophages and resistant bacteria, exploring various treatment strategies. Drawing upon both preclinical and clinical studies, the review highlights the effectiveness of bacteriophage therapy, particularly when integrated synergistically with conventional antibiotics. It discusses various treatment approaches for systemic and localized infections, demonstrating the adaptability of bacteriophage therapy across different clinical scenarios. Furthermore, the formulation and delivery of bacteriophages shed light on the various methods used to encapsulate and administer them effectively. It also acknowledges the challenge of bacterial resistance to bacteriophages and the ongoing efforts to overcome this hurdle. In addition, this review highlights the importance of the bacteriophage sensitivity profile (phagogram), which helps tailor treatment regimens to individual patients and specific pathogens. By surpassing the limitations of traditional antibiotics, bacteriophage-based therapies offer a personalized and potent solution against antibiotic resistance, promising to reshape the future of infectious disease management.
Collapse
|
5
|
Bolsan AC, Sampaio GV, Rodrigues HC, Silva De Souza S, Edwiges T, Celant De Prá M, Gabiatti NC. Phage formulations and delivery strategies: Unleashing the potential against antibiotic-resistant bacteria. Microbiol Res 2024; 282:127662. [PMID: 38447457 DOI: 10.1016/j.micres.2024.127662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
Bacterial control promoted by bacteriophages (phages) is an attractive tool in the face of the antibiotic crisis triggered by the exacerbated use of these drugs. Despite the growing interest in using these viruses, some gaps still need answers, such as the protection and delivery of phages. Some limitation points involve the degradation of phage proteins by enzymes or inactivation in low-pH environments. In this review, a literature search using keywords related to the field of virus delivery formulations was done to understand the current scenario of using delivery techniques and phage formulations. A total of 2096 raw results were obtained, which resulted in 140 publications after refinement. These studies were analyzed for main application techniques and areas, keywords, and countries. Of the total, 57% of the publications occurred in the last five years, and the encapsulation technique was the most used among the articles analyzed. As excipient agents, lactose, trehalose, mannitol, PEG, and Leucine stand out. The development of phage formulations, protection approaches, their delivery routes, and the knowledge about the best application strategy enables the use of these organisms in several sectors. It can act as a powerful tool against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Alice Chiapetti Bolsan
- Programa de Pós Graduação em Sustentabilidade Ambiental Urbana (PPGSAU) - Universidade Tecnológica Federal do Paraná, Curitiba, PR 81280-340, Brazil
| | - Gabrielli Vaz Sampaio
- Laboratório de Genética, Instituto Butantan - Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Heloisa Campeão Rodrigues
- Programa de Pós Graduação em Biotecnologia (PPGBIOTEC) - Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR 85660-000, Brazil
| | - Samara Silva De Souza
- Programa de Pós Graduação em Biotecnologia (PPGBIOTEC) - Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR 85660-000, Brazil
| | - Thiago Edwiges
- Programa de Pós Graduação em Sustentabilidade Ambiental Urbana (PPGSAU) - Universidade Tecnológica Federal do Paraná, Curitiba, PR 81280-340, Brazil
| | - Marina Celant De Prá
- Programa de Pós Graduação em Biotecnologia (PPGBIOTEC) - Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR 85660-000, Brazil
| | - Naiana Cristine Gabiatti
- Programa de Pós Graduação em Biotecnologia (PPGBIOTEC) - Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR 85660-000, Brazil.
| |
Collapse
|
6
|
Zalewska-Piątek B. Phage Therapy-Challenges, Opportunities and Future Prospects. Pharmaceuticals (Basel) 2023; 16:1638. [PMID: 38139765 PMCID: PMC10747886 DOI: 10.3390/ph16121638] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The increasing drug resistance of bacteria to commonly used antibiotics creates the need to search for and develop alternative forms of treatment. Phage therapy fits this trend perfectly. Phages that selectively infect and kill bacteria are often the only life-saving therapeutic option. Full legalization of this treatment method could help solve the problem of multidrug-resistant infectious diseases on a global scale. The aim of this review is to present the prospects for the development of phage therapy, the ethical and legal aspects of this form of treatment given the current situation of such therapy, and the benefits of using phage products in persons for whom available therapeutic options have been exhausted or do not exist at all. In addition, the challenges faced by this form of therapy in the fight against bacterial infections are also described. More clinical studies are needed to expand knowledge about phages, their dosage, and a standardized delivery system. These activities are necessary to ensure that phage-based therapy does not take the form of an experiment but is a standard medical treatment. Bacterial viruses will probably not become a miracle cure-a panacea for infections-but they have a chance to find an important place in medicine.
Collapse
Affiliation(s)
- Beata Zalewska-Piątek
- Department of Molecular Biotechnology and Microbiology, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
7
|
Liu S, Quek SY, Huang K. Advanced strategies to overcome the challenges of bacteriophage-based antimicrobial treatments in food and agricultural systems. Crit Rev Food Sci Nutr 2023; 64:12574-12598. [PMID: 37698066 DOI: 10.1080/10408398.2023.2254837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Bacteriophages (phages), highly prevalent in aquatic and terrestrial environments, have emerged as novel antimicrobial agents in food and agricultural systems. Owing to their efficient and unique infection mechanism, phages offer an alternative to antibiotic therapy as they specifically target their host bacteria without causing antibiotic resistance. However, the real-world applications of phages as antimicrobials are still limited due to their low survivability under harsh conditions and reduced antimicrobial efficacy. There is an unmet need to understand the challenges of using phages in food and agricultural systems and potential strategies to enhance their stability and delivery. This review overviews the challenges of using phages, including acidic conditions, improper temperatures, UV-light irradiation, desiccation, and inefficient delivery. It also summarizes novel strategies such as encapsulation, embedding, and immobilization, which enable improved viability and enhanced delivery. The protein capsid and nucleic acid components of phages are delicate and sensitive to physicochemical stresses. Incorporating phages into biocompatible materials can provide a physical barrier for improving phage stability and enhancing phage delivery, resulting in a high antimicrobial efficacy. In conclusion, the development of phage delivery systems can significantly overcome the challenges associated with phage treatments and reduce the risk of foodborne diseases in the industry.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Siew-Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
8
|
Wang X, Zhu X, Wang D, Li X, Wang J, Yin G, Huang Z, Pu X. Identification of a Specific Phage as Growth Factor Alternative Promoting the Recruitment and Differentiation of MSCs in Bone Tissue Regeneration. ACS Biomater Sci Eng 2023; 9:2426-2437. [PMID: 37023478 DOI: 10.1021/acsbiomaterials.2c01538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Inefficient use and loss of exogenously implanted mesenchymal stem cells (MSCs) are major concerns in MSCs-based bone tissue engineering. It is a promising approach to overcome the above issues by recruiting and regulation of endogenous MSCs. However, there are few substances that can recruit MSCs effectively and specifically to the site of bone injury. In this study, we identified a phage clone (termed P11) with specific affinity for MSCs through phage display biopanning, and further investigated the effects of P11 on the cytological behavior of MSCs and macrophages. The results showed that P11 could bind MSCs specifically and promote the proliferation and migration of MSCs. Meanwhile, P11 could polarize macrophages to the M1 phenotype and significantly changed their morphology, which further enhanced the chemotaxis of MSCs. Additionally, RNA-seq results revealed that P11 could promote the secretion of osteogenesis-related markers in MSCs through the TPL2-MEK-ERK signaling pathway. Altogether, P11 has great potential to be used as growth factor alternatives in bone tissue engineering, with the advantages of cheaper and stable activity. Our study also advances the understanding of the effects of phages on macrophages and MSCs, and provides a new idea for the development in the field of phage-based tissue engineering.
Collapse
Affiliation(s)
- Xingming Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xiupeng Zhu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Danni Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xiaoxu Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
9
|
Abavisani M, Khayami R, Hoseinzadeh M, Kodori M, Kesharwani P, Sahebkar A. CRISPR-Cas system as a promising player against bacterial infection and antibiotic resistance. Drug Resist Updat 2023; 68:100948. [PMID: 36780840 DOI: 10.1016/j.drup.2023.100948] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
The phenomenon of antibiotic resistance (AR) and its increasing global trends and destructive waves concerns patients and the healthcare system. In order to combat AR, it is necessary to explore new strategies when the current antibiotics fail to be effective. Thus, knowing the resistance mechanisms and appropriate diagnosis of bacterial infections may help enhance the sensitivity and specificity of novel strategies. On the other hand, resistance to antimicrobial compounds can spread from resistant populations to susceptible ones. Antimicrobial resistance genes (ARGs) significantly disseminate AR via horizontal and vertical gene transfer. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is a member of the bacterial immune system with the ability to remove the ARGs; therefore, it can be introduced as an effective and innovative strategy in the battle against AR. Here, we reviewed CRISPR-based bacterial diagnosis technologies. Moreover, the strategies to battle AR based on targeting bacterial chromosomes and resistance plasmids using the CRISPR-Cas system have been explained. Besides, we have presented the limitations of CRISPR delivery and potential solutions to help improve the future development of CRISPR-based platforms.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Reza Khayami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Melika Hoseinzadeh
- Student research committee, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Mansoor Kodori
- Non communicable Diseases Research Center, Bam University of Medical sciences, Bam, the Islamic Republic of Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran.
| |
Collapse
|
10
|
Ling H, Lou X, Luo Q, He Z, Sun M, Sun J. Recent advances in bacteriophage-based therapeutics: Insight into the post-antibiotic era. Acta Pharm Sin B 2022; 12:4348-4364. [PMID: 36561998 PMCID: PMC9764073 DOI: 10.1016/j.apsb.2022.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is one of the biggest threats to global health, as it can make the treatment of bacterial infections in humans difficult owing to their high incidence rate, mortality, and treatment costs. Bacteriophage, which constitutes a type of virus that can kill bacteria, is a promising alternative strategy against antibiotic-resistant bacterial infections. Although bacteriophage therapy was first used nearly a century ago, its development came to a standstill after introducing the antibiotics. Nowadays, with the rise in antibiotic resistance, bacteriophage therapy is in the spotlight again. As bacteriophage therapy is safe and has significant anti-bacterial activity, some specific types of bacteriophages (such as bacteriophage phiX174 and Pyo bacteriophage complex liquid) entered into phase III clinical trials. Herein, we review the key points of the antibiotic resistance crisis and illustrate the factors that support the renewal of bacteriophage applications. By summarizing recent state-of-the-art studies and clinical data on bacteriophage treatment, we introduced (i) the pharmacological mechanisms and advantages of antibacterial bacteriophages, (ii) bacteriophage preparations with clinical potential and bacteriophage-derived anti-bacterial treatment strategies, and (iii) bacteriophage therapeutics aimed at multiple infection types and infection-induced cancer treatments. Finally, we highlighted the challenges and critical perspectives of bacteriophage therapy for future clinical development.
Collapse
Affiliation(s)
- Hao Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyu Lou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengchi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China,Corresponding authors.
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China,Corresponding authors.
| |
Collapse
|
11
|
Kasbiyan H, Yousefzade O, Simiand E, Saperas N, del Valle LJ, Puiggalí J. Antibacterial Hydrogels Derived from Poly(γ-glutamic acid) Nanofibers. Gels 2022; 8:gels8020120. [PMID: 35200501 PMCID: PMC8871545 DOI: 10.3390/gels8020120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Biocompatible hydrogels with antibacterial properties derived from γ-polyglutamic acid (γ-PGA) were prepared from bulk and electrospun nanofibers. The antibacterial drugs loaded in these hydrogels were triclosan (TCS), chlorhexidine (CHX) and polyhexamethylene biguanide (PHMB); furthermore, bacteriophages were loaded as an alternative antibacterial agent. Continuous and regular γ-PGA nanofibers were successfully obtained by the electrospinning of trifluoroacetic acid solutions in a narrow polymer concentration range and restricted parameter values of flow rate, voltage and needle-collector distance. Hydrogels were successfully obtained by using cystamine as a crosslinking agent following previous published procedures. A closed pore structure was characteristic of bulk hydrogels, whereas an open but structurally consistent structure was found in the electrospun hydrogels. In this case, the morphology of the electrospun nanofibers was drastically modified after the crosslinking reaction, increasing their diameter and surface roughness according to the amount of the added crosslinker. The release of TCS, CHX, PHMB and bacteriophages was evaluated for the different samples, being results dependent on the hydrophobicity of the selected medium and the percentage of the added cystamine. A high efficiency of hydrogels to load bacteriophages and preserve their bactericide activity was demonstrated too.
Collapse
Affiliation(s)
- Hamidreza Kasbiyan
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain; (H.K.); (O.Y.); (E.S.)
| | - Omid Yousefzade
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain; (H.K.); (O.Y.); (E.S.)
| | - Estelle Simiand
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain; (H.K.); (O.Y.); (E.S.)
| | - Núria Saperas
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain; (H.K.); (O.Y.); (E.S.)
- Correspondence: (N.S.); (L.J.d.V.); (J.P.)
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain; (H.K.); (O.Y.); (E.S.)
- Barcelona Research Center for Multiscale Science and Engineering, Escola d’Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
- Correspondence: (N.S.); (L.J.d.V.); (J.P.)
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain; (H.K.); (O.Y.); (E.S.)
- Barcelona Research Center for Multiscale Science and Engineering, Escola d’Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
- Correspondence: (N.S.); (L.J.d.V.); (J.P.)
| |
Collapse
|
12
|
Wu Y, Battalapalli D, Hakeem MJ, Selamneni V, Zhang P, Draz MS, Ruan Z. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J Nanobiotechnology 2021; 19:401. [PMID: 34863214 PMCID: PMC8642896 DOI: 10.1186/s12951-021-01132-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance is spreading rapidly around the world and seriously impeding efforts to control microbial infections. Although nucleic acid testing is widely deployed for the detection of antibiotic resistant bacteria, the current techniques-mainly based on polymerase chain reaction (PCR)-are time-consuming and laborious. There is an urgent need to develop new strategies to control bacterial infections and the spread of antimicrobial resistance (AMR). The CRISPR-Cas system is an adaptive immune system found in many prokaryotes that presents attractive opportunities to target and edit nucleic acids with high precision and reliability. Engineered CRISPR-Cas systems are reported to effectively kill bacteria or even revert bacterial resistance to antibiotics (resensitizing bacterial cells to antibiotics). Strategies for combating antimicrobial resistance using CRISPR (i.e., Cas9, Cas12, Cas13, and Cas14) can be of great significance in detecting bacteria and their resistance to antibiotics. This review discusses the structures, mechanisms, and detection methods of CRISPR-Cas systems and how these systems can be engineered for the rapid and reliable detection of bacteria using various approaches, with a particular focus on nanoparticles. In addition, we summarize the most recent advances in applying the CRISPR-Cas system for virulence modulation of bacterial infections and combating antimicrobial resistance.
Collapse
Affiliation(s)
- Yuye Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Mohammed J Hakeem
- Department of Food Science and Human Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Venkatarao Selamneni
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pengfei Zhang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Gondil VS, Chhibber S. Bacteriophage and Endolysin Encapsulation Systems: A Promising Strategy to Improve Therapeutic Outcomes. Front Pharmacol 2021; 12:675440. [PMID: 34025436 PMCID: PMC8138158 DOI: 10.3389/fphar.2021.675440] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Vijay Singh Gondil
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India.,Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
14
|
Formulations for Bacteriophage Therapy and the Potential Uses of Immobilization. Pharmaceuticals (Basel) 2021; 14:ph14040359. [PMID: 33924739 PMCID: PMC8069877 DOI: 10.3390/ph14040359] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 02/07/2023] Open
Abstract
The emergence of antibiotic-resistant pathogens is becoming increasingly problematic in the treatment of bacterial diseases. This has led to bacteriophages receiving increased attention as an alternative form of treatment. Phages are effective at targeting and killing bacterial strains of interest and have yielded encouraging results when administered as part of a tailored treatment to severely ill patients as a last resort. Despite this, success in clinical trials has not always been as forthcoming, with several high-profile trials failing to demonstrate the efficacy of phage preparations in curing diseases of interest. Whilst this may be in part due to reasons surrounding poor phage selection and a lack of understanding of the underlying disease, there is growing consensus that future success in clinical trials will depend on effective delivery of phage therapeutics to the area of infection. This can be achieved using bacteriophage formulations instead of purely liquid preparations. Several encapsulation-based strategies can be applied to produce phage formulations and encouraging results have been observed with respect to efficacy as well as long term phage stability. Immobilization-based approaches have generally been neglected for the production of phage therapeutics but could also offer a viable alternative.
Collapse
|
15
|
Loh B, Gondil VS, Manohar P, Khan FM, Yang H, Leptihn S. Encapsulation and Delivery of Therapeutic Phages. Appl Environ Microbiol 2021; 87:AEM.01979-20. [PMID: 33310718 PMCID: PMC8090888 DOI: 10.1128/aem.01979-20] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Delivery of therapeutic compounds to the site of action is crucial. While many chemical substances such as beta-lactam antibiotics can reach therapeutic levels in most parts throughout the human body after administration, substances of higher molecular weight such as therapeutic proteins may not be able to reach the site of action (e.g. an infection), and are therefore ineffective. In the case of therapeutic phages, i.e. viruses that infect microbes that can be used to treat bacterial infections, this problem is exacerbated; not only are phages unable to penetrate tissues, but phage particles can be cleared by the immune system and phage proteins are rapidly degraded by enzymes or inactivated by the low pH in the stomach. Yet, the use of therapeutic phages is a highly promising strategy, in particular for infections caused by bacteria that exhibit multi-drug resistance. Clinicians increasingly encounter situations where no treatment options remain available for such infections, where antibiotic compounds are ineffective. While the number of drug-resistant pathogens continues to rise due to the overuse and misuse of antibiotics, no new compounds are becoming available as many pharmaceutical companies discontinue their search for chemical antimicrobials. In recent years, phage therapy has undergone massive innovation for the treatment of infections caused by pathogens resistant to conventional antibiotics. While most therapeutic applications of phages are well described in the literature, other aspects of phage therapy are less well documented. In this review, we focus on the issues that are critical for phage therapy to become a reliable standard therapy and describe methods for efficient and targeted delivery of phages, including their encapsulation.
Collapse
Affiliation(s)
- Belinda Loh
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, International Campus, Haining, Zhejiang 314400, China and The Second Affiliated Hospital Zhejiang University (SAHZU), School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Vijay Singh Gondil
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Prasanth Manohar
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, International Campus, Haining, Zhejiang 314400, China and The Second Affiliated Hospital Zhejiang University (SAHZU), School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Fazal Mehmood Khan
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Sebastian Leptihn
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China.
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, United Kingdom
| |
Collapse
|
16
|
Novello J, Sillankorva S, Pires P, Azeredo J, Wanke CH, Tondo EC, Bianchi O. Inactivation of
Pseudomonas aeruginosa
in mineral water by DP1 bacteriophage immobilized on ethylene‐vinyl acetate copolymer used as seal caps of plastic bottles. J Appl Polym Sci 2020. [DOI: 10.1002/app.49009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Júnia Novello
- Exact Sciences and Engineering Knowledge Area, University of Caxias do Sul Caxias do Sul Brazil
- Institute of Food Science and TechnologyFederal University of Rio Grande do Sul Porto Alegre Brazil
| | - Sanna Sillankorva
- INL ‐ International Iberian Nanotechnology LaboratoryAv. Mestre José Veiga Braga Portugal
| | - Priscila Pires
- Center of Biological EngineeringUniversity of Minho Braga Portugal
| | - Joana Azeredo
- Center of Biological EngineeringUniversity of Minho Braga Portugal
| | - César Henrique Wanke
- Exact Sciences and Engineering Knowledge Area, University of Caxias do Sul Caxias do Sul Brazil
| | - Eduardo César Tondo
- Institute of Food Science and TechnologyFederal University of Rio Grande do Sul Porto Alegre Brazil
| | - Otávio Bianchi
- Exact Sciences and Engineering Knowledge Area, University of Caxias do Sul Caxias do Sul Brazil
- Department of Materials EngineeringFederal University of Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
17
|
Moxon SR, Ferreira MJ, dos Santos P, Popa B, Gloria A, Katsarava R, Tugushi D, Serra AC, Hooper NM, Kimber SJ, Fonseca AC, Domingos MAN. A Preliminary Evaluation of the Pro-Chondrogenic Potential of 3D-Bioprinted Poly(ester Urea) Scaffolds. Polymers (Basel) 2020; 12:E1478. [PMID: 32630145 PMCID: PMC7408263 DOI: 10.3390/polym12071478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Degeneration of articular cartilage (AC) is a common healthcare issue that can result in significantly impaired function and mobility for affected patients. The avascular nature of the tissue strongly burdens its regenerative capacity contributing to the development of more serious conditions such as osteoarthritis. Recent advances in bioprinting have prompted the development of alternative tissue engineering therapies for the generation of AC. Particular interest has been dedicated to scaffold-based strategies where 3D substrates are used to guide cellular function and tissue ingrowth. Despite its extensive use in bioprinting, the application of polycaprolactone (PCL) in AC is, however, restricted by properties that inhibit pro-chondrogenic cell phenotypes. This study proposes the use of a new bioprintable poly(ester urea) (PEU) material as an alternative to PCL for the generation of an in vitro model of early chondrogenesis. The polymer was successfully printed into 3D constructs displaying adequate substrate stiffness and increased hydrophilicity compared to PCL. Human chondrocytes cultured on the scaffolds exhibited higher cell viability and improved chondrogenic phenotype with upregulation of genes associated with type II collagen and aggrecan synthesis. Bioprinted PEU scaffolds could, therefore, provide a potential platform for the fabrication of bespoke, pro-chondrogenic tissue engineering constructs.
Collapse
Affiliation(s)
- Samuel R. Moxon
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; (S.R.M.); (N.M.H.)
| | - Miguel J.S. Ferreira
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (M.J.S.F.); (B.P.)
| | - Patricia dos Santos
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal; (P.d.S.); (A.C.S.)
| | - Bogdan Popa
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (M.J.S.F.); (B.P.)
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials—National Research Council of Italy, V.le J.F. Kennedy 54—Mostra d’Oltremare Pad. 20, 80125 Naples, Italy;
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, 240, David Aghmashenebeli Alley, Tbilisi 0159, Georgia; (R.K.); (D.T.)
| | - David Tugushi
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, 240, David Aghmashenebeli Alley, Tbilisi 0159, Georgia; (R.K.); (D.T.)
| | - Armenio C. Serra
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal; (P.d.S.); (A.C.S.)
| | - Nigel M. Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; (S.R.M.); (N.M.H.)
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK;
| | - Ana C. Fonseca
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal; (P.d.S.); (A.C.S.)
| | - Marco A. N. Domingos
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK;
- The Henry Royce Institute, The University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
18
|
Zavradashvili N, Puiggali J, Katsarava R. Artificial Polymers made of α-amino Acids - Poly(Amino Acid)s, Pseudo-Poly(Amino Acid)s, Poly(Depsipeptide)s, and Pseudo-Proteins. Curr Pharm Des 2020; 26:566-593. [DOI: 10.2174/1381612826666200203122110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/21/2019] [Indexed: 01/01/2023]
Abstract
Degradable polymers (DPs) - “green materials” of the future, have an innumerable use in biomedicine,
particularly in the fields of tissue engineering and drug delivery. Among these kind of materials naturally occurring
polymers - proteins which constituted one of the most important “bricks of life” - α-amino acids (AAs) are
highly suitable. A wide biomedical applicability of proteins is due to special properties such as a high affinity
with tissues and releasing AAs upon biodegradation that means a nutritive potential for cells. Along with these
positive characteristics proteins as biomedical materials they have some shortcomings, such as batch-to-batch
variation, risk of disease transmission, and immune rejection. The last limitation is connected with the molecular
architecture of proteins. Furthermore, the content of only peptide bonds in protein molecules significantly restricts
their material properties. Artificial polymers with the composition of AAs are by far more promising as degradable
biomaterials since they are free from the limitations of proteins retaining at the same time their positive
features - a high tissue compatibility and nutritive potential. The present review deals with a brief description of
different families of AA-based artificial polymers, such as poly(amino acid)s, pseudo-poly(amino acid)s, polydepsipeptides,
and pseudo-proteins - relatively new and broad family of artificial AA-based DPs. Most of these
polymers have a different macromolecular architecture than proteins and contain various types of chemical links
along with NH-CO bonds that substantially expands properties of materials destined for sophisticated biomedical
applications.
Collapse
Affiliation(s)
- Nino Zavradashvili
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, # 240 David Aghmashenebeli Alley, Tbilisi 0131, Georgia
| | - Jordi Puiggali
- Departament d’Enginyeria Quimica, EEBE, Universitat Politecnica de Catalunya, Edifici I.2, C/Eduard Maristany, 10-14, Barcelona 08019, Spain
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, # 240 David Aghmashenebeli Alley, Tbilisi 0131, Georgia
| |
Collapse
|