1
|
Ignatz EH, Hall JR, Eslamloo K, Kurt Gamperl A, Rise ML. Characterization and transcript expression analyses of four Atlantic salmon (Salmo salar) serpinh1 paralogues provide evidence of evolutionary divergence. Gene 2024; 894:147984. [PMID: 37952747 DOI: 10.1016/j.gene.2023.147984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Atlantic salmon (Salmo salar) are not only the world's most economically important farmed fish in terms of total value, but also a salmonid, which means that they are invaluable for studies of the evolutionary fate of genes following multiple whole-genome duplication (WGD) events. In this study, four paralogues of the molecular chaperone serpinh1 were characterized in Atlantic salmon, as while this gene is considered to be a sensitive biomarker of heat stress in salmonids, mammalian studies have also identified it as being essential for collagen structural assembly and integrity. The four salmon paralogues were cloned and sequenced so that in silico analyses at the nucleotide and deduced amino acid levels could be performed. In addition, qPCR was used to measure: paralogue- and sex-specific constitutive serpinh1 expression across 17 adult tissues; and their expression in the liver and head kidney of male Atlantic salmon as affected by stress phenotype (high vs. low responder), increased temperature, and injection with a multi-valent vaccine. Compared to the other three paralogues, serpinh1a-2 had a unique constitutive expression profile across the 17 tissues. Although stress phenotype had minimal impact on the transcript expression of the four paralogues, injection with a commercial vaccine containing several formalin inactivated bacterins increased the expression of most paralogues (by 1.1 to 4.5-fold) across both tissues. At 20 °C, the expression levels of serpinh1a-1 and serpinh1a-2 were generally lower (by -1.1- to -1.6-fold), and serpinh1b-1 and serpinh1b-2 were 10.2- to 19.0-fold greater, in comparison to salmon held at 12 °C. With recent studies suggesting a putative link between serpinh1 and upper thermal tolerance in salmonids, the current research is a valuable first step in elucidating the potential mechanisms involved. This research: supports the use of serpinh1b-1 and serpinh1b-2 as a biomarkers of heat stress in salmon; and provides evidence of neo- and/or subfunctionalization between the paralogues, and important insights into how multiple genome duplication events can potentially lead to evolutionary divergence.
Collapse
Affiliation(s)
- Eric H Ignatz
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, 0 Marine Lab Road, St. John's, NL A1C 5S7, Canada.
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland and Labrador, 0 Marine Lab Road, St. John's, NL A1C 5S7, Canada
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, 0 Marine Lab Road, St. John's, NL A1C 5S7, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, 0 Marine Lab Road, St. John's, NL A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, 0 Marine Lab Road, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
2
|
Jia Y, Du J, Xi R, Zhang Q, Li L, Li D, Takagi Y, Zhang X. Effects of different culture salinities on the growth and muscle quality of grass carp (Ctenopharyngodon idellus). J Anim Sci 2024; 102:skae281. [PMID: 39331001 PMCID: PMC11465389 DOI: 10.1093/jas/skae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024] Open
Abstract
Grass carp (Ctenopharyngodon idellus) is an economically important farmed fish. This experiment was conducted to study the effects of different culture salinities on the growth and muscle quality of grass carp. We found that salinity of 0 to 5 had no significant effect on the growth of grass carp, but it significantly decreased at salinities above 5. Compared to salinity 0, the protein content of serum was significantly higher at salinities of 3 and 5. However, all serum biochemical compound measured, except glucose and total protein, decreased significantly at salinity 9. Muscle textural properties of grass carp were significantly higher at salinities of 3 and 5 than at 0, 7, and 9. Salinities of 0 to 3 had no significant effect on muscle nutrition of grass carp, but this parameter tended to decrease at salinities above 7. Salinities of 3 and 5 significantly favored muscle growth and expression of collagen-related genes, whereas the opposite was true for salinities of 7 and 9. These results indicated that grass carp grew normally at salinities of 3 and 5, with some improvement in muscle quality, whereas salinities of 7 and 9 had a negative effect on growth and quality. Therefore, appropriate salinity levels can help to improve the muscle quality of grass carp without affecting their growth.
Collapse
Affiliation(s)
- Yongkang Jia
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia Du
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Rujuan Xi
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zhang
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Li
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Li
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Yasuaki Takagi
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Xi Zhang
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| |
Collapse
|
3
|
Wen ML, Wu P, Jiang WD, Liu Y, Wu CM, Zhong CB, Li SW, Tang L, Feng L, Zhou XQ. Dietary threonine improves muscle nutritional value and muscle hardness associated with collagen synthesis in grass carp (Ctenopharyngodon idella). Food Chem 2023; 422:136223. [PMID: 37121206 DOI: 10.1016/j.foodchem.2023.136223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
To further explain the improvement effect of threonine (Thr) on the fillet quality of fish, a 9-week feeding experiment was conducted. After feeding graded levels of Thr (2.38, 5.38, 8.38, 11.38, 14.38 and 17.38 g/kg), the compositions of fillet hydrolyzed amino acid and fatty acid, and the muscle hardness associated with collagen biosynthesis were mainly analyzed in grass carp (Ctenopharyngodon idella). The results showed that Thr increased the pH value, changed the amino acids and fatty acid composition of fillets, especially essential amino acid (EAA), C22:6n3 (DHA) and C20:5n3 (EPA). Furthermore, this study revealed for the first time that the improvement of muscle hardness by Thr was associated with collagen biosynthesis, and the TGF-β1/Smads, LARP6a and Hsp47 regulate transcriptional processes, translation initiation and post-translational modifications in collagen biosynthesis, respectively. This study offered a basis for exploring the contribution of Thr in improving muscle quality in sub-adult grass carp.
Collapse
Affiliation(s)
- Mei-Lan Wen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Cai-Mei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng-Bo Zhong
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, Sichuan, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, Sichuan, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| |
Collapse
|
4
|
Fujii KK, Taga Y, Takagi YK, Masuda R, Hattori S, Koide T. The Thermal Stability of the Collagen Triple Helix Is Tuned According to the Environmental Temperature. Int J Mol Sci 2022; 23:ijms23042040. [PMID: 35216155 PMCID: PMC8877210 DOI: 10.3390/ijms23042040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/24/2022] Open
Abstract
Triple helix formation of procollagen occurs in the endoplasmic reticulum (ER) where the single-stranded α-chains of procollagen undergo extensive post-translational modifications. The modifications include prolyl 4- and 3-hydroxylations, lysyl hydroxylation, and following glycosylations. The modifications, especially prolyl 4-hydroxylation, enhance the thermal stability of the procollagen triple helix. Procollagen molecules are transported to the Golgi and secreted from the cell, after the triple helix is formed in the ER. In this study, we investigated the relationship between the thermal stability of the collagen triple helix and environmental temperature. We analyzed the number of collagen post-translational modifications and thermal melting temperature and α-chain composition of secreted type I collagen in zebrafish embryonic fibroblasts (ZF4) cultured at various temperatures (18, 23, 28, and 33 °C). The results revealed that thermal stability and other properties of collagen were almost constant when ZF4 cells were cultured below 28 °C. By contrast, at a higher temperature (33 °C), an increase in the number of post-translational modifications and a change in α-chain composition of type I collagen were observed; hence, the collagen acquired higher thermal stability. The results indicate that the thermal stability of collagen could be autonomously tuned according to the environmental temperature in poikilotherms.
Collapse
Affiliation(s)
- Kazunori K. Fujii
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan; (K.K.F.); (Y.K.T.)
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride 302-0017, Japan; (Y.T.); (S.H.)
| | - Yusuke K. Takagi
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan; (K.K.F.); (Y.K.T.)
| | - Ryo Masuda
- Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan;
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride 302-0017, Japan; (Y.T.); (S.H.)
| | - Takaki Koide
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan; (K.K.F.); (Y.K.T.)
- Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan;
- Correspondence: ; Tel.: +81-3-5286-2569
| |
Collapse
|