1
|
Soomro SEH, Boota MW, Zwain HM, Rasta M, Hu C, Liu C, Li Y, Li A, Chen J, Zhu C, Ali S, Guo J, Shi X, Soomro MHAA. From lake to fisheries: Interactive effect of climate and landuse changes hit on lake fish catch? ENVIRONMENTAL RESEARCH 2024; 258:119397. [PMID: 38876419 DOI: 10.1016/j.envres.2024.119397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Global warming and unpredictable nature possess a negative impact on fisheries and the daily activities of other habitats. GIS and remote sensing approach is an effective tool to determine the morphological characteristics of the lake. The present study addresses the interactive effect of climate and landuse changes hit on fish catch in lake fisheries. We used a combination of the landscape disturbance index, vulnerability index, and loss index to construct a complete ecological risk assessment framework based on the landscape structure of regional ecosystems. The results indicate an increase from around 45%-76% in the percentage of land susceptible to moderate to ecological severe risk in the landscape from 2004 to 2023. Since 1950, temperature changes have increased by 0.4%, precipitation has decreased by 6%, and water levels have decreased by 4.2%, based on the results. The results indicate that landuse, water temperature, precipitation, and water depth significantly impact the aquaculture system. The findings strongly suggest integrating possible consequences of environmental change on fish yield for governance modeling techniques to minimize their effects.
Collapse
Affiliation(s)
- Shan-E-Hyder Soomro
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China; College of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China.
| | - Muhammad Waseem Boota
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
| | - Haider M Zwain
- Water Resources Management Engineering Department, College of Engineering, Al-Qasim Green University, Babylon, 51013, Iraq.
| | - Majid Rasta
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China.
| | - Caihong Hu
- College of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China.
| | - Chengshuai Liu
- College of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yinghai Li
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China.
| | - Ao Li
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China.
| | - Jijun Chen
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China.
| | - Chunyun Zhu
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China.
| | - Sher Ali
- College of Economic and Management Sciences, China Three Gorges University, Yichang, 443002, China.
| | - Jiali Guo
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China.
| | - Xiaotao Shi
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China.
| | - Mairaj Hyder Alias Aamir Soomro
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China; School of Civil, Mining, and Environment, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
2
|
Liu X, Wang Z, Wang C, Wang B, Cao H, Shan J, Zhang X. Mercury distribution, exposure and risk in Poyang Lake and vicinity, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123409. [PMID: 38244906 DOI: 10.1016/j.envpol.2024.123409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Mercury (Hg), especially methylmercury (MeHg), which is highly neurotoxic, is a global pollutant that can affect human health because of its accumulation in aquatic products. Poyang Lake, an inland lake in China, has been significantly affected by human activity, yet there is limited understanding of local mercury contamination and potential exposure pathways to humans. In this study, we explored the risks of mercury exposure by sampling sediments, plants, and aquatic organisms in the lake and surrounding areas and analyzing total Hg (THg) and MeHg levels. Sediment sampling was conducted at the main lake, rivers, rice paddies, and fishponds. Two dominant species of plants and 15 species of aquatic organisms were sampled and analyzed. We assessed the characteristics of mercury in sediments using the geo-accumulation index (Igeo), mercury exposure using the biomagnification factor (BMF) and biota sediment accumulation factor (BSAF), and risks using thresholds for adverse effects. The highest THg concentrations (137.04 ± 44.3 ng g-1 dw) were detected in the main lake sediments, whereas the highest MeHg concentrations (0.47 ± 0.6 ng g-1 dw) were detected in fishpond sediments. Mercury accumulation in the main lake sediments could be assessed as contaminated (Igeo > 0: 81.6%). Yellow catfish had the highest mercury concentration (THg 770.69 ± 199.7 ng g-1 dw; MeHg 741.93 ± 168.8 ng g-1 dw). Piscivores were adversely affected by carnivorous fish (50.8%), but all fish concentrations did not exceed the food safety standards recommend by China and the WHO. The mercury exposure results revealed significant Hg biomagnification and enrichment (BMF >1: 94.55%; BSAFmax = 1218). Long-term monitoring of aquatic organisms is warranted.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhangwei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chunjie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Wang
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jihong Shan
- Wildlife and Plant Protection Center, Jiangxi Provincial Department of Forestry, Nanchang, 330006, China
| | - Xiaoshan Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Wu H, Yuan X, Xie M, Gao J, Xiong Z, Song R, Xie Z, Ou D. The Impact of Niclosamide Exposure on the Activity of Antioxidant Enzymes and the Expression of Glucose and Lipid Metabolism Genes in Black Carp ( Mylopharyngodon piceus). Genes (Basel) 2023; 14:2196. [PMID: 38137017 PMCID: PMC10743074 DOI: 10.3390/genes14122196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Niclosamide (NIC, 2',5-dichloro-4'-nitrosalicylanilide) is a salicylanilide molluscicide, and the extensive utilization and environmental pollution associated with NIC engender a potential hazard to both human health and the wellbeing of aquatic organisms. However, the mechanism of the chronic toxicity of NIC at environmentally relevant concentrations in terms of oxidative stress, metabolic disorder, and barrier functions in black carp (Mylopharyngodon piceus) is unknown. Therefore, healthy juvenile black carp (M. piceus) (average weight: 38.2 ± 2.5 g) were exposed to NIC at an environmentally realistic concentration (0, 10, and 50 μg/L) for 28 days. The findings of this study indicate that exposure to NIC resulted in reductions in weight gain, decreased activity of antioxidant enzymes, and increased expression of the Nrf2 gene. Furthermore, the liver demonstrated a greater accumulation of NIC than that in the gut and gills, as determined with a chemical analysis. Additionally, NIC exposure led to a significant reduction in ATP content and the activity of Na+/K+-ATPase and Ca2+/Mg2+-ATPase in the gut. Meanwhile, exposure to NIC resulted in a decrease in the liver glucose (Glu) level, gut cholesterol (CHO), and glycogen (Gln) and triglyceride (TG) content in all examined tissues. Conversely, it led to an increase in tissue lactic acid (LA) and acetyl-CoA levels, as well as LDH activity. Furthermore, NIC exposure at environmentally relevant concentrations demonstrated an upregulation in the expression of genes associated with glycolysis, such as PK and GK, while concurrently downregulating the gluconeogenesis gene G6Pase. Additionally, NIC exhibited an upregulation in the expression of genes related to β-oxidation, such as CPT1 and ACOX, while downregulating genes involved in triglyceride synthesis, including SREBP1, GPAT, FAS, and ACC1. Moreover, NIC facilitated fatty acid transportation through the overexpression of FATP and Fat/cd36. These results suggest that chronic exposure to NIC is associated with oxidative stress, compromised barrier function, and metabolic disorder. Moreover, these results underscore the significance of assessing the potential consequences of NIC for black carp and aquatic environments for aquaculture.
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, China; (H.W.); (X.Y.); (M.X.); (J.G.); (Z.X.); (Z.X.); (D.O.)
| | | | | |
Collapse
|