1
|
Rosero J, Monzani PS, Pessoa GP, Coelho GCZ, Carvalho GB, López LS, Senhorini JA, Dos Santos SCA, Yasui GS. Traceability of primordial germ cells in three neotropical fish species aiming genetic conservation actions. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2025-2042. [PMID: 38060079 DOI: 10.1007/s10695-023-01279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Primordial germ cells (PGCs) are embryonic pluripotent cells that can differentiate into spermatogonia and oogonia, and therefore, PGCs are a genetic source for germplasm conservation through cryobanking and the generation of germline chimeras. The knowledge of PGC migration routes is essential for transplantation studies. In this work, the mRNA synthesized from the ddx4 3'UTR sequence of Pseudopimelodus mangurus, in fusion with gfp or dsred, was microinjected into zygotes of three neotropical species (P. mangurus, Astyanax altiparanae, and Prochilodus lineatus) for PGC labeling. Visualization of labeled PGCs was achieved by fluorescence microscopy during embryonic development. In addition, ddx4 and dnd1 expressions were evaluated during embryonic development, larvae, and adult tissues of P. mangurus, to validate their use as a PGC marker. As a result, the effective identification of presumptive PGCs was obtained. DsRed-positive PGC of P. mangurus was observed in the hatching stage, GFP-positive PGC of A. altiparanae in the gastrula stage, and GFP-positive PGCs from P. lineatus were identified at the segmentation stage, with representative labeling percentages of 29% and 16% in A. altiparanae and P. lineatus, respectively. The expression of ddx4 and dnd1 of P. mangurus confirmed the specificity of these genes in germ cells. These results point to the functionality of the P. mangurus ddx4 3'UTR sequence as a PGC marker, demonstrating that PGC labeling was more efficient in A. altiparanae and P. lineatus. The procedures used to identify PGCs in P. mangurus consolidate the first step for generating germinal chimeras as a conservation action of P. mangurus.
Collapse
Affiliation(s)
- Jenyffer Rosero
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil.
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil.
| | - Paulo Sérgio Monzani
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Giselle Pessanha Pessoa
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Geovanna Carla Zacheo Coelho
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Gabriella Braga Carvalho
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| | - Lucia Suárez López
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | - José Augusto Senhorini
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | - George Shigueki Yasui
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| |
Collapse
|
2
|
Yang Y, Ma Q, Jin S, Huang B, Wang Z, Chen G. Identification of mapk genes, and their expression profiles in response to low salinity stress, in cobia (Rachycentron canadum). Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110950. [PMID: 38307403 DOI: 10.1016/j.cbpb.2024.110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Mitogen-activated protein kinases (MAPKs) are a class of protein kinases that regulate various physiological processes, and play a crucial role in maintaining the osmotic equilibrium of fish. The objective of this study was to identify and characterize the mapk family genes in cobia (Rachycentron canadum) and examine their expression profiles under different low salinity stress regimes (acute: from 30‰ to 10‰ in 1 h, sub-chronic: from 30‰ to 10‰ over 4 d). A total of 12 cobia mapk genes (Rcmapks) were identified and cloned, including six erk subfamily genes (Rcmapk1/3/4/6/7/15), three jnk subfamily genes (Rcmapk8/9/10) and three p38 mapk subfamily genes (Rcmapk 11/13/14). Domain analysis indicated that the RcMAPKs possessed the typical domains including S_TKc and PKc_like domain. Phylogenetic analysis revealed that the Rcmapks were most closely related to those of the turbot (Scophthalmus maximus). The tissue distribution of mapk genes in adult cobia and the expression patterns of Rcmapks under different low salinity stress regimes were investigated using quantitative real-time PCR (qRT-PCR). The results revealed that Rcmapk3/9/10/11/13/14 exhibited a relatively broad expression distribution across 14 different tissues. For all these genes the highest expression level was in the brain, except for Rcmapk14 (highly expressed in the stomach, gill, and skin). The genes Rcmapk1/6/15 showed significantly higher expression in the testis. Under acute low salinity stress, expression of Rcmapk1/3/6/7/9/11/13/14 was significantly altered in the gill, intestine, and trunk kidney, however, the aforementioned genes exhibited very different expression patterns among the three tissues. In the gill, most of the genes from the erk (Rcmapk3/6/7) and p38 mapk subfamily (Rcmapk11/13/14) were significantly up-regulated at almost all the time points (P < 0.05); Similarly, the expression of Rcmapk3/9/11/13/14 genes were significantly increased in the trunk kidney; while in the intestine, most of the altered genes (Rcmapk6/7/9/11/13/14) were significantly down-regulated at 1 h. Following the sub-chronic low salinity stress, expression of Rcmapk1/3/6/7/9/11/13/14 genes were significantly altered in all three tissues. These findings provide important reference data for elucidating the roles of cobia mapk family genes in response to low salinity stress.
Collapse
Affiliation(s)
- Yunsheng Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qian Ma
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Shulei Jin
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Baosong Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongliang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
3
|
Shen X, Yáñez JM, Bastos Gomes G, Poon ZWJ, Foster D, Alarcon JF, Domingos JA. Comparative gonad transcriptome analysis in cobia ( Rachycentron canadum). Front Genet 2023; 14:1128943. [PMID: 37091808 PMCID: PMC10117682 DOI: 10.3389/fgene.2023.1128943] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Background: Cobia (Rachycentron canadum) is a species of fish with high commercial potential particularly due to fast growth rates. The evidence of sexual size dimorphism favoring females indicate potential benefits in having a monosex culture. However, the involvement of genetic factors responsible for sexual development and gonadal maintenance that produces phenotypic sex in cobia is largely unknown. Methods: In the present study, we performed transcriptome sequencing of cobia to identify sex-biased significantly differentially expressed genes (DEGs) in testes and ovaries. The reliability of the gonad transcriptome data was validated by qPCR analysis of eight selected significantly differential expressed sex-related candidate genes. Results: This comparative gonad transcriptomic analysis revealed that 7,120 and 4,628 DEGs are up-regulated in testes or ovaries, respectively. Further functional annotation analyses identified 76 important candidate genes involved in sex determination cascades or sex differentiation, including 42 known testis-biased DEGs (dmrt1, amh and sox9 etc.), and 34 known ovary-biased DEGs (foxl2, sox3 and cyp19a etc.). Moreover, eleven significantly enriched pathways functionally related to sex determination and sex differentiation were identified, including Wnt signaling pathway, oocyte meiosis, the TGF-beta signaling pathway and MAPK signaling pathway. Conclusion: This work represents the first comparative gonad transcriptome study in cobia. The putative sex-associated DEGs and pathways provide an important molecular basis for further investigation of cobia's sex determination, gonadal development as well as potential control breeding of monosex female populations for a possible aquaculture setting.
Collapse
Affiliation(s)
- Xueyan Shen
- Tropical Futures Institute, James Cook University Singapore, Singapore, Singapore
- *Correspondence: Xueyan Shen, ; Jose A. Domingos,
| | - José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Giana Bastos Gomes
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | | | | | | | - Jose A. Domingos
- Tropical Futures Institute, James Cook University Singapore, Singapore, Singapore
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
- *Correspondence: Xueyan Shen, ; Jose A. Domingos,
| |
Collapse
|