1
|
Meng K, Chen H, Pan Y, Li Y. The dynamics of red blood cells traversing slits of mechanical heart valves under high shear. Biophys J 2024; 123:3780-3797. [PMID: 39340153 PMCID: PMC11560308 DOI: 10.1016/j.bpj.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/04/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024] Open
Abstract
Hemolysis, including subclinical hemolysis, is a potentially severe complications of mechanical heart valves (MHVs), which leads to shortened red blood cell (RBC) lifespan and hemolytic anemia. Serious hemolysis is usually associated with structural deterioration and regurgitation. However, the shear stress in MHVs' narrow leakage slits is much lower than the shear stress threshold causing hemolysis and the mechanisms in this context remain largely unclear. This study investigated the hemolysis mechanism of RBCs in cell-size slits under high shear rates by establishing in vitro microfluidic devices and a coarse-grained molecular dynamics (CGMD) model, considering both fluid and structural effects simultaneously. Microfluidic experiments and computational simulation revealed six distinct dynamic states of RBC traversal through MHVs' microscale slits under various shear rates and slit sizes. It elucidated that RBC dynamic states were influenced by not only by fluid forces but significantly by the compressive force of slit walls. The variation of the potential energy of the cell membrane indicated its stretching, deformation, and rupture during traversal, corresponding to the six dynamic states. The maximum forces exerted on membrane by water particles and slit walls directly determined membrane rupture, serving as a critical determinant. This analysis helps in understanding the contribution of the slit walls to membrane rupture and identifying the threshold force that leads to membrane rupture. The hemolysis mechanism of traversing microscale slits is revealed to effectively explain the occurrences of hemolysis and subclinical hemolysis.
Collapse
Affiliation(s)
- Kuilin Meng
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Haosheng Chen
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yunfan Pan
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yongjian Li
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Laha S, Fourtakas G, Das PK, Keshmiri A. Smoothed particle hydrodynamics based FSI simulation of the native and mechanical heart valves in a patient-specific aortic model. Sci Rep 2024; 14:6762. [PMID: 38514703 PMCID: PMC10957961 DOI: 10.1038/s41598-024-57177-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
The failure of the aortic heart valve is common, resulting in deterioration of the pumping function of the heart. For the end stage valve failure, bi-leaflet mechanical valve (most popular artificial valve) is implanted. However, due to its non-physiological behaviour, a significant alteration is observed in the normal haemodynamics of the aorta. While in-vivo experimentation of a human heart valve (native and artificial) is a formidable task, in-silico study using computational fluid dynamics (CFD) with fluid structure interaction (FSI) is an effective and economic tool for investigating the haemodynamics of natural and artificial heart valves. In the present work, a haemodynamic model of a natural and mechanical heart valve has been developed using meshless particle-based smoothed particle hydrodynamics (SPH). In order to further enhance its clinical relevance, this study employs a patient-specific vascular geometry and presents a successful validation against traditional finite volume method and 4D magnetic resonance imaging (MRI) data. The results have demonstrated that SPH is ideally suited to simulate the heart valve function due to its Lagrangian description of motion, which is a favourable feature for FSI. In addition, a novel methodology for the estimation of the wall shear stress (WSS) and other related haemodynamic parameters have been proposed from the SPH perspective. Finally, a detailed comparison of the haemodynamic parameters has been carried out for both native and mechanical aortic valve, with a particular emphasis on the clinical risks associated with the mechanical valve.
Collapse
Affiliation(s)
- Sumanta Laha
- School of Engineering, University of Manchester, Manchester, M13 9PL, UK
- Department of Mechanical Engineering, IIT Kharagpur, Kharagpur, 721302, India
| | - Georgios Fourtakas
- School of Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Prasanta K Das
- Department of Mechanical Engineering, IIT Kharagpur, Kharagpur, 721302, India
| | - Amir Keshmiri
- School of Engineering, University of Manchester, Manchester, M13 9PL, UK.
- Manchester University NHS Foundation Trust, Manchester, M13 9PL, UK.
| |
Collapse
|
3
|
Gazo Hanna E, Younes K, Roufayel R, Khazaal M, Fajloun Z. Engineering innovations in medicine and biology: Revolutionizing patient care through mechanical solutions. Heliyon 2024; 10:e26154. [PMID: 38390063 PMCID: PMC10882044 DOI: 10.1016/j.heliyon.2024.e26154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The overlap between mechanical engineering and medicine is expanding more and more over the years. Engineers are now using their expertise to design and create functional biomaterials and are continually collaborating with physicians to improve patient health. In this review, we explore the state of scientific knowledge in the areas of biomaterials, biomechanics, nanomechanics, and computational fluid dynamics (CFD) in relation to the pharmaceutical and medical industry. Focusing on current research and breakthroughs, we provide an overview of how these fields are being used to create new technologies for medical treatments of human patients. Barriers and constraints in these fields, as well as ways to overcome them, are also described in this review. Finally, the potential for future advances in biomaterials to fundamentally change the current approach to medicine and biology is also discussed.
Collapse
Affiliation(s)
- Eddie Gazo Hanna
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Khaled Younes
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Mickael Khazaal
- École Supérieure des Techniques Aéronautiques et de Construction Automobile, ISAE-ESTACA, France
| | - Ziad Fajloun
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, 1300, Tripoli, Lebanon
| |
Collapse
|
4
|
Zandvakili H, Hassani K, Khorramymehr S. A mathematical model for biomechanical behavior of the aortic arch. Perfusion 2022:2676591221093195. [PMID: 35596511 DOI: 10.1177/02676591221093195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aortic arch plays a significant role in homeostatic mechanisms to retain blood pressure at stable balance in the cardiovascular system. Therefore, the objective is to estimate and identify cardiovascular illness imposed by the abnormal blood hemodynamic domain. In this regard, hemodynamic forces are monitored by the baroreflex of the artery wall. Therefore, these receptors quickly detect the abnormal stress magnitudes in the aortic arterial wall. The present study presents a 3D aortic arch model extracted by a Computerized tomography scan. Also, the numerical solution was carried out by ANSYS 2020 R1 in view of Fluid-Structure Interaction After that, we found wall shear stress (WSS), pressure, and velocity in the fluid domain. Also, the normal stress was analyzed to determine the aortic arch baroreflex location in the solid range. In this regard, higher WSS values are measured at the supra-aortic branches going out the aortic arch that reached 42.5 Pa. Also, higher normal stress happened at the aortic root and the supra-aortic branches and reached approximately 200 kPa at peak systole.
Collapse
Affiliation(s)
- Hamid Zandvakili
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kamran Hassani
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Siamak Khorramymehr
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Chen A, Basri AAB, Ismail NB, Tamagawa M, Zhu D, Ahmad KA. Simulation of Mechanical Heart Valve Dysfunction and the Non-Newtonian Blood Model Approach. Appl Bionics Biomech 2022; 2022:9612296. [PMID: 35498142 PMCID: PMC9042627 DOI: 10.1155/2022/9612296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
The mechanical heart valve (MHV) is commonly used for the treatment of cardiovascular diseases. Nonphysiological hemodynamic in the MHV may cause hemolysis, platelet activation, and an increased risk of thromboembolism. Thromboembolism may cause severe complications and valve dysfunction. This paper thoroughly reviewed the simulation of physical quantities (velocity distribution, vortex formation, and shear stress) in healthy and dysfunctional MHV and reviewed the non-Newtonian blood flow characteristics in MHV. In the MHV numerical study, the dysfunction will affect the simulation results, increase the pressure gradient and shear stress, and change the blood flow patterns, increasing the risks of hemolysis and platelet activation. The blood flow passes downstream and has obvious recirculation and stagnation region with the increased dysfunction severity. Due to the complex structure of the MHV, the non-Newtonian shear-thinning viscosity blood characteristics become apparent in MHV simulations. The comparative study between Newtonian and non-Newtonian always shows the difference. The shear-thinning blood viscosity model is the basics to build the blood, also the blood exhibiting viscoelastic properties. More details are needed to establish a complete and more realistic simulation.
Collapse
Affiliation(s)
- Aolin Chen
- Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Adi Azriff Bin Basri
- Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Norzian Bin Ismail
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Masaaki Tamagawa
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka 804-8550, Japan
| | - Di Zhu
- Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Kamarul Arifin Ahmad
- Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| |
Collapse
|
6
|
Torabi A, Dehkordi MAS. Using computational fluid dynamic for hemodialysis air chamber design modification. Int J Artif Organs 2022; 45:488-496. [PMID: 35356821 DOI: 10.1177/03913988221084342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Design modification is a main step in developing machines and artificial organ. A new dialysis apparatus air chamber detects clot formation and interruption of blood refining circuit. Due to using enough anticoagulant, thrombosis may occur because of vortex formed by turbulent flow. Turbulent blood flow causes to endothelial injury thus supporting the formation of a thrombus. Computational fluid dynamics can estimate the flow velocity and turbulence distribution and it can be used as applicable tool to design diagnosis and modifying. In this paper CFD simulation used to find the high turbulent intensity region within the chamber and an optimization method is adopted based on the geometry changing and trying the simulation results. The turbulent intensity is chosen as a criterion to achieving to an optimized condition. Finally, a best geometry is derived for the chamber entrance by this process and modified prototype is manufactured. This refined chamber maintains on the dialysis machine and tested for several patients with different blood characteristics. The results show that no more clot formation has been observed in this new designed chamber.
Collapse
Affiliation(s)
- Amir Torabi
- Department of Engineering and Technology, Shahrekord University, Shahrekord, Iran
| | | |
Collapse
|
7
|
Katakia YT, Thakkar NP, Thakar S, Sakhuja A, Goyal R, Sharma H, Dave R, Mandloi A, Basu S, Nigam I, Kuncharam BVR, Chowdhury S, Majumder S. Dynamic alterations of H3K4me3 and H3K27me3 at ADAM17 and Jagged-1 gene promoters cause an inflammatory switch of endothelial cells. J Cell Physiol 2021; 237:992-1012. [PMID: 34520565 DOI: 10.1002/jcp.30579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 01/01/2023]
Abstract
Histone protein modifications control the inflammatory state of many immune cells. However, how dynamic alteration in histone methylation causes endothelial inflammation and apoptosis is not clearly understood. To examine this, we explored two contrasting histone methylations; an activating histone H3 lysine 4 trimethylation (H3K4me3) and a repressive histone H3 lysine 27 trimethylation (H3K27me3) in endothelial cells (EC) undergoing inflammation. Through computer-aided reconstruction and 3D printing of the human coronary artery, we developed a unique model where EC were exposed to a pattern of oscillatory/disturbed flow as similar to in vivo conditions. Upon induction of endothelial inflammation, we detected a significant rise in H3K4me3 caused by an increase in the expression of SET1/COMPASS family of H3K4 methyltransferases, including MLL1, MLL2, and SET1B. In contrast, EC undergoing inflammation exhibited truncated H3K27me3 level engendered by EZH2 cytosolic translocation through threonine 367 phosphorylation and an increase in the expression of histone demethylating enzyme JMJD3 and UTX. Additionally, many SET1/COMPASS family of proteins, including MLL1 (C), MLL2, and WDR5, were associated with either UTX or JMJD3 or both and such association was elevated in EC upon exposure to inflammatory stimuli. Dynamic enrichment of H3K4me3 and loss of H3K27me3 at Notch-associated gene promoters caused ADAM17 and Jagged-1 derepression and abrupt Notch activation. Conversely, either reducing H3K4me3 or increasing H3K27me3 in EC undergoing inflammation attenuated Notch activation, endothelial inflammation, and apoptosis. Together, these findings indicate that dynamic chromatin modifications may cause an inflammatory and apoptotic switch of EC and that epigenetic reprogramming can potentially improve outcomes in endothelial inflammation-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Yash T Katakia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Niyati P Thakkar
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Sumukh Thakar
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Ashima Sakhuja
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Raghav Goyal
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Harshita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Rakshita Dave
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Ayushi Mandloi
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Sayan Basu
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Ishan Nigam
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Bhanu V R Kuncharam
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| |
Collapse
|
8
|
Kuchel PW, Cox CD, Daners D, Shishmarev D, Galvosas P. Surface model of the human red blood cell simulating changes in membrane curvature under strain. Sci Rep 2021; 11:13712. [PMID: 34211012 PMCID: PMC8249411 DOI: 10.1038/s41598-021-92699-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
We present mathematical simulations of shapes of red blood cells (RBCs) and their cytoskeleton when they are subjected to linear strain. The cell surface is described by a previously reported quartic equation in three dimensional (3D) Cartesian space. Using recently available functions in Mathematica to triangularize the surfaces we computed four types of curvature of the membrane. We also mapped changes in mesh-triangle area and curvatures as the RBCs were distorted. The highly deformable red blood cell (erythrocyte; RBC) responds to mechanically imposed shape changes with enhanced glycolytic flux and cation transport. Such morphological changes are produced experimentally by suspending the cells in a gelatin gel, which is then elongated or compressed in a custom apparatus inside an NMR spectrometer. A key observation is the extent to which the maximum and minimum Principal Curvatures are localized symmetrically in patches at the poles or equators and distributed in rings around the main axis of the strained RBC. Changes on the nanometre to micro-meter scale of curvature, suggest activation of only a subset of the intrinsic mechanosensitive cation channels, Piezo1, during experiments carried out with controlled distortions, which persist for many hours. This finding is relevant to a proposal for non-uniform distribution of Piezo1 molecules around the RBC membrane. However, if the curvature that gates Piezo1 is at a very fine length scale, then membrane tension will determine local curvature; so, curvatures as computed here (in contrast to much finer surface irregularities) may not influence Piezo1 activity. Nevertheless, our analytical methods can be extended address these new mechanistic proposals. The geometrical reorganization of the simulated cytoskeleton informs ideas about the mechanism of concerted metabolic and cation-flux responses of the RBC to mechanically imposed shape changes.
Collapse
Affiliation(s)
- Philip W Kuchel
- School of Life and Environmental Sciences, University of Sydney, Building G08, Sydney, NSW, 2006, Australia.
| | - Charles D Cox
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Daniel Daners
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - Dmitry Shishmarev
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Petrik Galvosas
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University Wellington, Wellington, New Zealand
| |
Collapse
|
9
|
Azriff Basri A, Zuber M, Illyani Basri E, Shukri Zakaria M, Fazli Abd Aziz A, Tamagawa M, Arifin Ahmad K. Fluid-Structure Interaction in Problems of Patient Specific Transcatheter Aortic Valve Implantation with and Without Paravalvular Leakage Complication. FLUID DYNAMICS & MATERIALS PROCESSING 2021; 17:531-553. [DOI: 10.32604/fdmp.2021.010925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
Kitajima H, Hirota M, Iwai T, Hamajima K, Ozawa R, Hayashi Y, Yajima Y, Iida M, Koizumi T, Kioi M, Mitsudo K, Ogawa T. Computational Fluid Simulation of Fibrinogen around Dental Implant Surfaces. Int J Mol Sci 2020; 21:ijms21020660. [PMID: 31963895 PMCID: PMC7014059 DOI: 10.3390/ijms21020660] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 11/30/2022] Open
Abstract
Ultraviolet treatment of titanium implants makes their surfaces hydrophilic and enhances osseointegration. However, the mechanism is not fully understood. This study hypothesizes that the recruitment of fibrinogen, a critical molecule for blood clot formation and wound healing, is influenced by the degrees of hydrophilicity/hydrophobicity of the implant surfaces. Computational fluid dynamics (CFD) implant models were created for fluid flow simulation. The hydrophilicity level was expressed by the contact angle between the implant surface and blood plasma, ranging from 5° (superhydrophilic), 30° (hydrophilic) to 50° and 70° (hydrophobic), and 100° (hydrorepellent). The mass of fibrinogen flowing into the implant interfacial zone (fibrinogen infiltration) increased in a time dependent manner, with a steeper slope for surfaces with greater hydrophilicity. The mass of blood plasma absorbed into the interfacial zone (blood plasma infiltration) was also promoted by the hydrophilic surfaces but it was rapid and non-time-dependent. There was no linear correlation between the fibrinogen infiltration rate and the blood plasma infiltration rate. These results suggest that hydrophilic implant surfaces promote both fibrinogen and blood plasma infiltration to their interface. However, the infiltration of the two components were not proportional, implying a selectively enhanced recruitment of fibrinogen by hydrophilic implant surfaces.
Collapse
Affiliation(s)
- Hiroaki Kitajima
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (M.H.); (K.H.); (R.O.); (T.O.)
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; (T.I.); (Y.H.); (Y.Y.); (M.I.); (T.K.); (M.K.); (K.M.)
- Correspondence: ; Tel.: +81-45-787-2659; Fax: +81-45-785-8438
| | - Makoto Hirota
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (M.H.); (K.H.); (R.O.); (T.O.)
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, 4-57 Urafune, Minami-ku, Yokohama, Kanagawa 232-0024, Japan
| | - Toshinori Iwai
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; (T.I.); (Y.H.); (Y.Y.); (M.I.); (T.K.); (M.K.); (K.M.)
| | - Kosuke Hamajima
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (M.H.); (K.H.); (R.O.); (T.O.)
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Ryotaro Ozawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (M.H.); (K.H.); (R.O.); (T.O.)
- Division of Prosthodontics and Oral Rehabilitation, Department of Oral Function and Restoration, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Yuichiro Hayashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; (T.I.); (Y.H.); (Y.Y.); (M.I.); (T.K.); (M.K.); (K.M.)
| | - Yasuharu Yajima
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; (T.I.); (Y.H.); (Y.Y.); (M.I.); (T.K.); (M.K.); (K.M.)
| | - Masaki Iida
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; (T.I.); (Y.H.); (Y.Y.); (M.I.); (T.K.); (M.K.); (K.M.)
| | - Toshiyuki Koizumi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; (T.I.); (Y.H.); (Y.Y.); (M.I.); (T.K.); (M.K.); (K.M.)
| | - Mitomu Kioi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; (T.I.); (Y.H.); (Y.Y.); (M.I.); (T.K.); (M.K.); (K.M.)
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; (T.I.); (Y.H.); (Y.Y.); (M.I.); (T.K.); (M.K.); (K.M.)
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (M.H.); (K.H.); (R.O.); (T.O.)
| |
Collapse
|