1
|
Castaldi V, Bellino A, Baldantoni D. The ecology of bladderworts: The unique hunting-gathering-farming strategy in plants. FOOD WEBS 2023. [DOI: 10.1016/j.fooweb.2023.e00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
2
|
Cook A, Pandhigunta K, Acevedo MA, Walker A, Didcock RL, Castro JT, O’Neill D, Acharya R, Bhamla MS, Anderson PSL, Ilton M. A Tunable, Simplified Model for Biological Latch Mediated Spring Actuated Systems. Integr Org Biol 2022; 4:obac032. [PMID: 36060863 PMCID: PMC9434652 DOI: 10.1093/iob/obac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/01/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
We develop a model of latch-mediated spring actuated (LaMSA) systems relevant to comparative biomechanics and bioinspired design. The model contains five components: two motors (muscles), a spring, a latch, and a load mass. One motor loads the spring to store elastic energy and the second motor subsequently removes the latch, which releases the spring and causes movement of the load mass. We develop freely available software to accompany the model, which provides an extensible framework for simulating LaMSA systems. Output from the simulation includes information from the loading and release phases of motion, which can be used to calculate kinematic performance metrics that are important for biomechanical function. In parallel, we simulate a comparable, directly actuated system that uses the same motor and mass combinations as the LaMSA simulations. By rapidly iterating through biologically relevant input parameters to the model, simulated kinematic performance differences between LaMSA and directly actuated systems can be used to explore the evolutionary dynamics of biological LaMSA systems and uncover design principles for bioinspired LaMSA systems. As proof of principle of this concept, we compare a LaMSA simulation to a directly actuated simulation that includes either a Hill-type force-velocity trade-off or muscle activation dynamics, or both. For the biologically-relevant range of parameters explored, we find that the muscle force-velocity trade-off and muscle activation have similar effects on directly actuated performance. Including both of these dynamic muscle properties increases the accelerated mass range where a LaMSA system outperforms a directly actuated one.
Collapse
Affiliation(s)
- Andrés Cook
- Department of Physics, Harvey Mudd College, Claremont, CA 91711
| | | | - Mason A Acevedo
- Department of Physics, Harvey Mudd College, Claremont, CA 91711
| | - Adam Walker
- Department of Physics, Harvey Mudd College, Claremont, CA 91711
| | | | | | - Declan O’Neill
- Department of Physics, Harvey Mudd College, Claremont, CA 91711
| | - Raghav Acharya
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318
| | - M Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318
| | - Philip S L Anderson
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | | |
Collapse
|
3
|
Miranda VFO, Silva SR, Reut MS, Dolsan H, Stolarczyk P, Rutishauser R, Płachno BJ. A Historical Perspective of Bladderworts ( Utricularia): Traps, Carnivory and Body Architecture. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122656. [PMID: 34961127 PMCID: PMC8707321 DOI: 10.3390/plants10122656] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 05/14/2023]
Abstract
The genus Utricularia includes around 250 species of carnivorous plants, commonly known as bladderworts. The generic name Utricularia was coined by Carolus Linnaeus in reference to the carnivorous organs (Utriculus in Latin) present in all species of the genus. Since the formal proposition by Linnaeus, many species of Utricularia were described, but only scarce information about the biology for most species is known. All Utricularia species are herbs with vegetative organs that do not follow traditional models of morphological classification. Since the formal description of Utricularia in the 18th century, the trap function has intrigued naturalists. Historically, the traps were regarded as floating organs, a common hypothesis that was maintained by different botanists. However, Charles Darwin was most likely the first naturalist to refute this idea, since even with the removal of all traps, the plants continued to float. More recently, due mainly to methodological advances, detailed studies on the trap function and mechanisms could be investigated. This review shows a historical perspective on Utricularia studies which focuses on the traps and body organization.
Collapse
Affiliation(s)
- Vitor F. O. Miranda
- Laboratory of Plant Systematics, Department of Applied Biology, School of Agricultural and Veterinarian Sciences, Campus Jaboticabal, UNESP—São Paulo State University, Jaboticabal CEP 14884-900, Brazil; (S.R.S.); (H.D.)
- Correspondence:
| | - Saura R. Silva
- Laboratory of Plant Systematics, Department of Applied Biology, School of Agricultural and Veterinarian Sciences, Campus Jaboticabal, UNESP—São Paulo State University, Jaboticabal CEP 14884-900, Brazil; (S.R.S.); (H.D.)
| | - Markus S. Reut
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9 St., 30-387 Kraków, Poland; (M.S.R.); (B.J.P.)
| | - Hugo Dolsan
- Laboratory of Plant Systematics, Department of Applied Biology, School of Agricultural and Veterinarian Sciences, Campus Jaboticabal, UNESP—São Paulo State University, Jaboticabal CEP 14884-900, Brazil; (S.R.S.); (H.D.)
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425 Kraków, Poland;
| | - Rolf Rutishauser
- Department of Systematic and Evolutionary Botany, University of Zurich, CH-8008 Zurich, Switzerland;
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9 St., 30-387 Kraków, Poland; (M.S.R.); (B.J.P.)
| |
Collapse
|
4
|
Müller UK, Berg O, Schwaner JM, Brown MD, Li G, Voesenek CJ, van Leeuwen JL. Bladderworts, the smallest known suction feeders, generate inertia-dominated flows to capture prey. THE NEW PHYTOLOGIST 2020; 228:586-595. [PMID: 32506423 DOI: 10.1111/nph.16726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 05/02/2023]
Abstract
Aquatic bladderworts (Utricularia gibba and U. australis) capture zooplankton in mechanically triggered underwater traps. With characteristic dimensions less than 1 mm, the trapping structures are among the smallest known to capture prey by suction, a mechanism that is not effective in the creeping-flow regime where viscous forces prevent the generation of fast and energy-efficient suction flows. To understand what makes suction feeding possible on the small scale of bladderwort traps, we characterised their suction flows experimentally (using particle image velocimetry) and mathematically (using computational fluid dynamics and analytical mathematical models). We show that bladderwort traps avoid the adverse effects of creeping flow by generating strong, fast-onset suction pressures. Our findings suggest that traps use three morphological adaptations: the trap walls' fast release of elastic energy ensures strong and constant suction pressure; the trap door's fast opening ensures effectively instantaneous onset of suction; the short channel leading into the trap ensures undeveloped flow, which maintains a wide effective channel diameter. Bladderwort traps generate much stronger suction flows than larval fish with similar gape sizes because of the traps' considerably stronger suction pressures. However, bladderworts' ability to generate strong suction flows comes at considerable energetic expense.
Collapse
Affiliation(s)
- Ulrike K Müller
- Department of Biology, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA
| | - Otto Berg
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA
| | - Janneke M Schwaner
- Biological Sciences, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
| | - Matthew D Brown
- Department of Biology, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA
| | - Gen Li
- Department of Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Showa-machi, Kanazawa-ku, Yokohama-city, Kanagawa, 3173-25, 236-0001, Japan
| | - Cees J Voesenek
- Experimental Zoology Group, Wageningen University, De Elst 1, Wageningen, 6708WD, the Netherlands
| | - Johan L van Leeuwen
- Experimental Zoology Group, Wageningen University, De Elst 1, Wageningen, 6708WD, the Netherlands
| |
Collapse
|