1
|
Naha S, Kaur S, Bhattacharya R, Cheemanapalli S, Iyyappan Y. ANPS: machine learning based server for identification of anti-nutritional proteins in plants. Funct Integr Genomics 2024; 24:201. [PMID: 39453508 DOI: 10.1007/s10142-024-01474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Anti-nutrient factors are inherently present in almost all major crops, which impede the absorption of crucial vitamins and minerals upon human consumption. The commonly found anti-nutrients in food crops are saponins, tannins, lectins, and phytates etc. Currently, there is a lack of computational server for identification of proteins that encode for anti-nutritional factors in plants. Consequently, this study represents a computational approach aimed at distinguishing between proteins encoding anti-nutritional factors and those providing essential nutrients. In this work, machine learning algorithms have been employed to identify plant specific anti-nutrient factor proteins from protein sequences by using compositional features. Achieving a five-fold cross-validation training performance of 94.34% AUC-ROC and 94.13% AUC-PR with extreme gradient boosting surpasses the performance of other methods such as support vector machine, random forest, and adaptive boosting. These results suggest the proposed approach is highly reliable in predicting plant-specific anti-nutritional factor proteins. The resulting prediction models have led to the development of an online server named ANPS, freely available at https://nipb-bi.icar.gov.in .
Collapse
Affiliation(s)
- Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, Pusa, New Delhi, 110012, India
| | - Sarvjeet Kaur
- ICAR-National Institute for Plant Biotechnology, Pusa, New Delhi, 110012, India
| | | | | | - Yuvaraj Iyyappan
- ICAR-National Institute for Plant Biotechnology, Pusa, New Delhi, 110012, India.
| |
Collapse
|
2
|
Li R, Song T, Kang R, Ma W, Zhang M, Ren F. Investigating the impact of ultrasound-assisted cellulase pretreatment on the nutrients, phytic acid, and phenolics bioaccessibility in sprouted brown rice. ULTRASONICS SONOCHEMISTRY 2024; 106:106878. [PMID: 38669797 PMCID: PMC11068634 DOI: 10.1016/j.ultsonch.2024.106878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
This study aimed to elucidate the impact of ultrasound-assisted cellulase (UC) pretreatment on nutrients, phytic acid, and the bioavailability of phenolics during brown rice sprouting. It sought to unveil the underlying mechanisms by quantifying the activity of key enzymes implicated in these processes. The sprouted brown rice (SBR) surface structure was harmed by the UC pretreatment, which also increased the amount of γ-oryzanol and antioxidant activity in the SBR. Concurrently, the UC pretreatment boosted the activity of phytase, glutamate decarboxylase, succinate semialdehyde dehydrogenase, Gamma-aminobutyric acid (GABA) transaminase, chalcone isomerase, and phenylalanine ammonia lyase, thereby decreasing the phytic acid content and increasing the GABA, flavonoid, and phenolic content in SBR. In addition, UC-pretreated SBR showed increased phenolic release and bioaccessibility during in vitro digestion when compared to the treated group. These findings might offer theoretical direction for using SBR to maximize value.
Collapse
Affiliation(s)
- Ren Li
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China
| | - Tiancong Song
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China
| | - Rui Kang
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China
| | - Wenhao Ma
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China
| | - Mengmeng Zhang
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China
| | - Feiyue Ren
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
3
|
Kraithong S, Theppawong A, Bunyameen N, Zhang X, Huang R. Advancements in understanding low starch hydrolysis in pigmented rice: A comprehensive overview of mechanisms. Food Chem 2024; 439:138079. [PMID: 38043273 DOI: 10.1016/j.foodchem.2023.138079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
This review explores the health-promoting properties of pigmented rice, focusing on its unique ability to promote slow starch digestion and improve blood sugar regulation. While the impact of slow starch digestibility is widely acknowledged, our current understanding of the underlying mechanisms remains insufficient. Therefore, this review aims to bridge the gap by examining the intricate factors and mechanisms that contribute to the low starch hydrolysis of pigmented rice to better understand how it promotes slower starch digestion and improves blood sugar regulation. This paves the way for future advancements in utilizing pigmented rice by enhancing our understanding of the mechanisms behind low starch hydrolysis. These may include the development of food products aimed at mitigating hyperglycemic symptoms and reducing the risk of diabetes. This research broadens our understanding of pigmented rice and facilitates the development of strategies to promote health outcomes by incorporating pigmented rice into our diets.
Collapse
Affiliation(s)
- Supaluck Kraithong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Atiruj Theppawong
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Nasuha Bunyameen
- Graduate School of Horticulture, Chiba University, Chiba 271-8510, Japan
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Kumari A, Roy A. Enhancing micronutrient absorption through simultaneous fortification and phytic acid degradation. Food Sci Biotechnol 2023; 32:1235-1256. [PMID: 37362807 PMCID: PMC10290024 DOI: 10.1007/s10068-023-01255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Phytic acid (PA), an endogenous antinutrient in cereals and legumes, hinders mineral absorption by forming less bioavailable, stable PA-mineral complexes. For individual micronutrients, the PA-to-mineral molar ratio below the critical level ensures better bioavailability and is achieved by adding minerals or removing PA from cereals and pulses. Although several PA reduction and fortification strategies are available, the inability to completely eradicate or degrade PA using available techniques always subdues fortification's impact by hindering fortified micronutrient absorption. The bioavailability of micronutrients could be increased through simultaneous PA degradation and fortification. Following primary PA reduction of the raw material, the fortification step should also incorporate additional essential control stages to further PA inactivation, improving micronutrient absorption. In this review, the chemistry of PA interaction with metal ions, associated controlling parameters, and its impact on PA reduction during fortification is also evaluated, and further suggestions were made for the fortification's success.
Collapse
Affiliation(s)
- Ankanksha Kumari
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, Jharkhand India
| | - Anupam Roy
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, Jharkhand India
| |
Collapse
|
5
|
Martínez-Villaluenga C, Peñas E. Innovative Processing Technologies for Developing Functional Ingredients and Food Products with Health Benefits from Grains. Foods 2023; 12:foods12071356. [PMID: 37048177 PMCID: PMC10093044 DOI: 10.3390/foods12071356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Grains are dry seeds belonging to diverse crops, including cereals, pseudocereals and pulses [...].
Collapse
Affiliation(s)
| | - Elena Peñas
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 6, 28040 Madrid, Spain
| |
Collapse
|
6
|
Shraim AM, Ahmad MI, Rahman MSF, Ng JC. Concentrations of essential and toxic elements and health risk assessment in brown rice from Qatari market. Food Chem 2022; 376:131938. [PMID: 34992047 DOI: 10.1016/j.foodchem.2021.131938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023]
Abstract
Twenty-two brown rice varieties available in the Qatari market were analyzed for essential and toxic elements by ICP-MS. Found concentrations (µg/kg) were: As: 171 ± 78 (62-343), Cd: 42 ± 60 (4-253), Cr: 515 ± 69 (401-639), Pb: 6 ± 7 (<MDL-26), and U: 0.1 ± 0.5 (<MDL-2). One third of the samples contained high levels of arsenic. Significant differences (p < 0.008) in concentrations were observed for many elements based on both the grains' country of origin and size. Calculated carcinogenic risk according to published speciation data of inorganic arsenic and chromium(VI) available in the literature for rice is > 1 in million, may possibly be > 1 in 10,000 based on conservatively high brown rice consumption rates of 200 g/d or 400 g/d in Qatar. These elevated risks may be applicable to specific population subgroups with diabetic conditions who consume only brown rice. Non-cancer risks are mainly derived from Mn, V, Se, and Cd with a hazard index > 1 from some brown rice samples.
Collapse
Affiliation(s)
- Amjad M Shraim
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar.
| | | | | | - Jack C Ng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, QLD 4102, Australia.
| |
Collapse
|
7
|
An HS-GC-IMS analysis of volatile flavor compounds in brown rice flour and brown rice noodles produced using different methods. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|