1
|
Deng P, Fan T, Gao P, Peng Y, Li M, Li J, Qin M, Hao R, Wang L, Li M, Zhang L, Chen C, He M, Lu Y, Ma Q, Luo Y, Tian L, Xie J, Chen M, Xu S, Zhou Z, Yu Z, Pi H. SIRT5-Mediated Desuccinylation of RAB7A Protects Against Cadmium-Induced Alzheimer's Disease-Like Pathology by Restoring Autophagic Flux. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402030. [PMID: 38837686 PMCID: PMC11321632 DOI: 10.1002/advs.202402030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Cadmium (Cd) is a neurotoxic contaminant that induces cognitive decline similar to that observed in Alzheimer's disease (AD). Autophagic flux dysfunction is attributed to the pathogenesis of AD, and this study aimed to investigate the effect of autophagy on environmental Cd-induced AD progression and the underlying mechanism. Here, Cd exposure inhibited autophagosome-lysosome fusion and impaired lysosomal function, leading to defects in autophagic clearance and then to APP accumulation and nerve cell death. Proteomic analysis coupled with Ingenuity Pathway Analysis (IPA) identified SIRT5 as an essential molecular target in Cd-impaired autophagic flux. Mechanistically, Cd exposure hampered the expression of SIRT5, thus increasing the succinylation of RAB7A at lysine 31 and inhibiting RAB7A activity, which contributed to autophagic flux blockade. Importantly, SIRT5 overexpression led to the restoration of autophagic flux blockade, the alleviation of Aβ deposition and memory deficits, and the desuccinylation of RAB7A in Cd-exposed FAD4T mice. Additionally, SIRT5 levels decrease mainly in neurons but not in other cell clusters in the brains of AD patients according to single-nucleus RNA sequencing data from the public dataset GSE188545. This study reveals that SIRT5-catalysed RAB7A desuccinylation is an essential adaptive mechanism for the amelioration of Cd-induced autophagic flux blockade and AD-like pathogenesis.
Collapse
Affiliation(s)
- Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Tengfei Fan
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410007China
| | - Peng Gao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Yongchun Peng
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410007China
| | - Min Li
- Basic Medical LaboratoryGeneral Hospital of Central Theater CommandWuhan430070China
- Hubei Key Laboratory of Central Nervous System Tumour and InterventionWuhan430070China
| | - Jingdian Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Mingke Qin
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Rongrong Hao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Liting Wang
- Biomedical Analysis CenterArmy Medical UniversityChongqing400038China
| | - Min Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Lei Zhang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Chunhai Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Mindi He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Yonghui Lu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Qinlong Ma
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Shangcheng Xu
- Center of Laboratory MedicineChongqing Prevention and Treatment Center for Occupational DiseasesChongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and PoisoningChongqing400060China
| | - Zhou Zhou
- Center for Neuro IntelligenceSchool of MedicineChongqing UniversityChongqing400030China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
- State Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| |
Collapse
|
2
|
Bordini M, Wang Z, Soglia F, Petracci M, Schmidt CJ, Abasht B. RNA-sequencing revisited data shed new light on wooden breast myopathy. Poult Sci 2024; 103:103902. [PMID: 38908127 PMCID: PMC11246058 DOI: 10.1016/j.psj.2024.103902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024] Open
Abstract
Wooden Breast (WB) abnormality represents one of the major challenges that the poultry industry has faced in the last 10 years. Despite the enormous progress in understanding the mechanisms underlying WB, the precise initial causes remain to be clarified. In this scenario, the present research is intended to characterize the gene expression profiles of broiler Pectoralis major muscles affected by WB, comparing them to the unaffected counterpart, to provide new insights into the biological mechanisms underlying this defect and potentially identifying novel genes likely involved in its occurrence. To this purpose, data obtained in a previous study through the RNA-sequencing technology have been used to identify differentially expressed genes (DEGs) between 6 affected and 5 unaffected broilers' breast muscles, by using the newest reference genome assembly for Gallus gallus (GRCg7b). Also, to deeply investigate molecular and biological pathways involved in the WB progression, pathways analyses have been performed. The results achieved through the differential gene expression analysis mainly evidenced the downregulation of glycogen metabolic processes, gluconeogenesis, and tricarboxylic acid cycle in WB muscles, thus corroborating the evidence of a dysregulated energy metabolism characterizing breasts affected by this abnormality. Also, genes related to hypertrophic muscle growth have been identified as differentially expressed (e.g., WFIKKN1). Together with that, a downregulation of genes involved in mitochondrial biogenesis and functionality has been detected. Among them, PPARGC1A and PPARGC1B chicken genes are particularly noteworthy. These genes not only have essential roles in regulating mitochondrial biogenesis but also play pivotal roles in maintaining glucose and energy homeostasis. In view of that, their downregulation in WB-affected muscle may be considered as potentially related to both the mitochondrial dysfunction and altered glucose metabolism in WB muscles, and their key involvement in the molecular alterations characterizing this muscular abnormality might be hypothesized.
Collapse
Affiliation(s)
- Martina Bordini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Cesena, Italy
| | - Ziqing Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Cesena, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Cesena, Italy.
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
3
|
Kong B, Owens C, Bottje W, Shakeri M, Choi J, Zhuang H, Bowker B. Proteomic analyses on chicken breast meat with white striping myopathy. Poult Sci 2024; 103:103682. [PMID: 38593545 PMCID: PMC11016796 DOI: 10.1016/j.psj.2024.103682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
White striping (WS) is an emerging myopathy that results in significant economic losses as high as $1 billion (combined with losses derived from other breast myopathies including woody breast and spaghetti meat) to the global poultry industry. White striping is detected as the occurrence of white lines on raw poultry meat. The exact etiologies for WS are still unclear. Proteomic analyses of co-expressed WS and woody breast phenotypes previously demonstrated dysfunctions in carbohydrate metabolism, protein synthesis, and calcium buffering capabilities in muscle cells. In this study, we conducted shotgun proteomics on chicken breast fillets exhibiting only WS that were collected at approximately 6 h postmortem. After determining WS severity, protein extractions were conducted from severe WS meat with no woody breast (WB) condition (n = 5) and normal non-affected (no WS) control meat (n = 5). Shotgun proteomics was conducted by Orbitrap Lumos, tandem mass tag (TMT) analysis. As results, 148 differentially abundant proteins (|fold change|>1.4; p-value < 0.05) were identified in the WS meats compared with controls. The significant canonical pathways included BAG2 signaling pathway, glycogen degradation II, isoleucine degradation I, aldosterone signaling in epithelial cells, and valine degradation I. The potential upstream regulators include LIPE, UCP1, ATP5IF1, and DMD. The results of this study provide additional insights into the cellular mechanisms on the WS myopathy and meat quality.
Collapse
Affiliation(s)
- Byungwhi Kong
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Quality & Safety Assessment Research Unit, Athens, GA, USA.
| | - Casey Owens
- Department of Poultry Science, Division of Agriculture, University of Arkansas System, Fayetteville, AR, USA
| | - Walter Bottje
- Department of Poultry Science, Division of Agriculture, University of Arkansas System, Fayetteville, AR, USA
| | - Majid Shakeri
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Quality & Safety Assessment Research Unit, Athens, GA, USA
| | - Janghan Choi
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Quality & Safety Assessment Research Unit, Athens, GA, USA
| | - Hong Zhuang
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Quality & Safety Assessment Research Unit, Athens, GA, USA
| | - Brian Bowker
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Quality & Safety Assessment Research Unit, Athens, GA, USA
| |
Collapse
|
4
|
Wang Z, Khondowe P, Brannick E, Abasht B. Spatial transcriptomics reveals alterations in perivascular macrophage lipid metabolism in the onset of Wooden Breast myopathy in broiler chickens. Sci Rep 2024; 14:3450. [PMID: 38342952 PMCID: PMC10859375 DOI: 10.1038/s41598-024-53904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024] Open
Abstract
This study aims to use spatial transcriptomics to characterize the cell-type-specific expression profile associated with the microscopic features observed in Wooden Breast myopathy. 1 cm3 muscle sample was dissected from the cranial part of the right pectoralis major muscle from three randomly sampled broiler chickens at 23 days post-hatch and processed with Visium Spatial Gene Expression kits (10X Genomics), followed by high-resolution imaging and sequencing on the Illumina Nextseq 2000 system. WB classification was based on histopathologic features identified. Sequence reads were aligned to the chicken reference genome (Galgal6) and mapped to histological images. Unsupervised K-means clustering and Seurat integrative analysis differentiated histologic features and their specific gene expression pattern, including lipid laden macrophages (LLM), unaffected myofibers, myositis and vasculature. In particular, LLM exhibited reprogramming of lipid metabolism with up-regulated lipid transporters and genes in peroxisome proliferator-activated receptors pathway, possibly through P. Moreover, overexpression of fatty acid binding protein 5 could enhance fatty acid uptake in adjacent veins. In myositis regions, increased expression of cathepsins may play a role in muscle homeostasis and repair by mediating lysosomal activity and apoptosis. A better knowledge of different cell-type interactions at early stages of WB is essential in developing a comprehensive understanding.
Collapse
Affiliation(s)
- Ziqing Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Paul Khondowe
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Erin Brannick
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
5
|
Alnahhas N, Pouliot E, Saucier L. The hypoxia-inducible factor 1 pathway plays a critical role in the development of breast muscle myopathies in broiler chickens: a comprehensive review. Front Physiol 2023; 14:1260987. [PMID: 37719466 PMCID: PMC10500075 DOI: 10.3389/fphys.2023.1260987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
In light of the increased worldwide demand for poultry meat, genetic selection efforts have intensified to produce broiler strains that grow at a higher rate, have greater breast meat yield (BMY), and convert feed to meat more efficiently. The increased selection pressure for these traits, BMY in particular, has produced multiple breast meat quality defects collectively known as breast muscle myopathies (BMM). Hypoxia has been proposed as one of the major mechanisms triggering the onset and occurrence of these myopathies. In this review, the relevant literature on the causes and consequences of hypoxia in broiler breast muscles is reviewed and discussed, with a special focus on the hypoxia-inducible factor 1 (HIF-1) pathway. Muscle fiber hypertrophy induced by selective breeding for greater BMY reduces the space available in the perimysium and endomysium for blood vessels and capillaries. The hypoxic state that results from the lack of circulation in muscle tissue activates the HIF-1 pathway. This pathway alters energy metabolism by promoting anaerobic glycolysis, suppressing the tricarboxylic acid cycle and damaging mitochondrial function. These changes lead to oxidative stress that further exacerbate the progression of BMM. In addition, activating the HIF-1 pathway promotes fatty acid synthesis, lipogenesis, and lipid accumulation in myopathic muscle tissue, and interacts with profibrotic growth factors leading to increased deposition of matrix proteins in muscle tissue. By promoting lipidosis and fibrosis, the HIF-1 pathway contributes to the development of the distinctive phenotypes of BMM, including white striations in white striping-affected muscles and the increased hardness of wooden breast-affected muscles.
Collapse
Affiliation(s)
- Nabeel Alnahhas
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, QC, Canada
| | | | - Linda Saucier
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, QC, Canada
- Swine and Poultry Infectious Diseases Research Center, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
6
|
Kaewsatuan P, Poompramun C, Kubota S, Yongsawatdigul J, Molee W, Uimari P, Molee A. Thigh muscle metabolic response is linked to feed efficiency and meat characteristics in slow-growing chicken. Poult Sci 2023; 102:102741. [PMID: 37186966 DOI: 10.1016/j.psj.2023.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The Korat chicken (KR) is a slow-growing Thai chicken breed with relatively poor feed efficiency (FE) but very tasty meat with high protein and low fat contents, and a unique texture. To enhance the competitiveness of KR, its FE should be improved. However, selecting for FE has an unknown effect on meat characteristics. Thus, understanding the genetic basis underlying FE traits and meat characteristics is needed. In this study, 75 male KR birds were raised up to 10 wk of age. For each bird, the feed conversion ratio (FCR), residual feed intake (RFI), and physicochemical properties, flavor precursors, and biological compounds in the thigh meat were evaluated. At 10 wk of age, thigh muscle samples from 6 birds (3 with high FCR and 3 with low FCR values) were selected, and their proteomes were investigated using a label-free proteomic method. Weighted gene coexpression network analysis (WGCNA) was used to screen the key protein modules and pathways. The WGCNA results revealed that FE and meat characteristics significantly correlated with the same protein module. However, the correlation was unfavorable; improving FE may result in a decrease in meat quality through the alteration in biological processes including glycolysis/gluconeogenesis, metabolic pathway, carbon metabolism, biosynthesis of amino acids, pyruvate metabolism, and protein processing in the endoplasmic reticulum. The hub proteins of the significant module (TNNT1, TNNT3, TNNI2, TNNC2, MYLPF, MYH10, GADPH, PGK1, LDHA, and GPI) were also identified to be associated with energy metabolism, and muscle growth and development. Given that the same proteins and pathways are present in FE and meat characteristics but in opposite directions, selection practices for KR should simultaneously consider both trait groups to maintain the high meat quality of KR while improving FE.
Collapse
Affiliation(s)
- Pramin Kaewsatuan
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chotima Poompramun
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Satoshi Kubota
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wittawat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pekka Uimari
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00790, Finland
| | - Amonrat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
7
|
Gagaoua M. Recent Advances in OMICs Technologies and Application for Ensuring Meat Quality, Safety and Authenticity. Foods 2022; 11:foods11162532. [PMID: 36010532 PMCID: PMC9407444 DOI: 10.3390/foods11162532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland
| |
Collapse
|
8
|
Kang K, Zhou N, Peng W, Peng F, Ma M, Li L, Fu F, Xiang S, Zhang H, He X, Song Z. Multi-Omics Analysis of the Microbiome and Metabolome Reveals the Relationship Between the Gut Microbiota and Wooden Breast Myopathy in Broilers. Front Vet Sci 2022; 9:922516. [PMID: 35812872 PMCID: PMC9260154 DOI: 10.3389/fvets.2022.922516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Wooden breast (WB) is a widely prevalent myopathy in broiler chickens. However, the role of the gut microbiota in this myopathy remains largely unknown, in particular the regulatory effect of gut microbiota in the modulation of muscle metabolism. Totally, 300 1-day-old Arbor Acres broilers were raised until 49 days and euthanized, and the breast filets were classified as normal (NORM), mild (MILD), or severe wooden breast (SEV). Birds with WB comprised 27.02% of the individuals. Severe WB filets had a greater L* value, a* value, and dripping loss but a lower pH (P < 0.05). WB filets had abundant myofiber fragmentation, with a lower average myofiber caliber and more fibers with a diameter of <20 μm (P < 0.05). The diversity of the intestinal microflora was decreased in birds with severe WB, with decreases in Chao 1, and observed species indices. At the phylum level, birds with severe WB had a lower Firmicutes/Bacteroidetes ratio (P = 0.098) and a decreased abundance of Verrucomicrobia (P < 0.05). At the species level, gut microbiota were positively correlated with 131 digesta metabolites in pathways of glutamine and glutamate metabolism and arginine biosynthesis but were negatively correlated with 30 metabolites in the pathway of tyrosine metabolism. In plasma, WB induced five differentially expressed metabolites (DEMs), including anserine and choline, which were related to the severity of the WB lesion. The microbial-derived metabolites, including guanidoacetic acid, antiarol, and (2E)-decenoyl-ACP, which entered into plasma were related to meat quality traits and myofiber traits. In summary, WB filets differed in gut microbiota, digesta, and plasma metabolites. Gut microbiota respond to the wooden breast myopathy by driving dynamic changes in digesta metabolites that eventually enter the plasma.
Collapse
Affiliation(s)
- Kelang Kang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| | - Nanxuan Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| | - Weishi Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| | - Fang Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| | - Mengmeng Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| | - Liwei Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| | - Fuyi Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| | - Shuhan Xiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| |
Collapse
|
9
|
Sanden KW, Böcker U, Ofstad R, Pedersen ME, Høst V, Afseth NK, Rønning SB, Pleshko N. Characterization of Collagen Structure in Normal, Wooden Breast and Spaghetti Meat Chicken Fillets by FTIR Microspectroscopy and Histology. Foods 2021; 10:548. [PMID: 33800851 PMCID: PMC7998852 DOI: 10.3390/foods10030548] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 12/30/2022] Open
Abstract
Recently, two chicken breast fillet abnormalities, termed Wooden Breast (WB) and Spaghetti Meat (SM), have become a challenge for the chicken meat industry. The two abnormalities share some overlapping morphological features, including myofiber necrosis, intramuscular fat deposition, and collagen fibrosis, but display very different textural properties. WB has a hard, rigid surface, while the SM has a soft and stringy surface. Connective tissue is affected in both WB and SM, and accordingly, this study's objective was to investigate the major component of connective tissue, collagen. The collagen structure was compared with normal (NO) fillets using histological methods and Fourier transform infrared (FTIR) microspectroscopy and imaging. The histology analysis demonstrated an increase in the amount of connective tissue in the chicken abnormalities, particularly in the perimysium. The WB displayed a mixture of thin and thick collagen fibers, whereas the collagen fibers in SM were thinner, fewer, and shorter. For both, the collagen fibers were oriented in multiple directions. The FTIR data showed that WB contained more β-sheets than the NO and the SM fillets, whereas SM fillets expressed the lowest mature collagen fibers. This insight into the molecular changes can help to explain the underlying causes of the abnormalities.
Collapse
Affiliation(s)
- Karen Wahlstrøm Sanden
- Nofima AS, Muninbakken 9-13, Breivika, 9019 Tromsø, Norway; (U.B.); (R.O.); (M.E.P.); (V.H.); (N.K.A.); (S.B.R.)
| | - Ulrike Böcker
- Nofima AS, Muninbakken 9-13, Breivika, 9019 Tromsø, Norway; (U.B.); (R.O.); (M.E.P.); (V.H.); (N.K.A.); (S.B.R.)
| | - Ragni Ofstad
- Nofima AS, Muninbakken 9-13, Breivika, 9019 Tromsø, Norway; (U.B.); (R.O.); (M.E.P.); (V.H.); (N.K.A.); (S.B.R.)
| | - Mona Elisabeth Pedersen
- Nofima AS, Muninbakken 9-13, Breivika, 9019 Tromsø, Norway; (U.B.); (R.O.); (M.E.P.); (V.H.); (N.K.A.); (S.B.R.)
| | - Vibeke Høst
- Nofima AS, Muninbakken 9-13, Breivika, 9019 Tromsø, Norway; (U.B.); (R.O.); (M.E.P.); (V.H.); (N.K.A.); (S.B.R.)
| | - Nils Kristian Afseth
- Nofima AS, Muninbakken 9-13, Breivika, 9019 Tromsø, Norway; (U.B.); (R.O.); (M.E.P.); (V.H.); (N.K.A.); (S.B.R.)
| | - Sissel Beate Rønning
- Nofima AS, Muninbakken 9-13, Breivika, 9019 Tromsø, Norway; (U.B.); (R.O.); (M.E.P.); (V.H.); (N.K.A.); (S.B.R.)
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA;
| |
Collapse
|