1
|
Wu Y, Liu Y, Jia Y, Zhang H, Ren F. Formation and Application of Starch-Polyphenol Complexes: Influencing Factors and Rapid Screening Based on Chemometrics. Foods 2024; 13:1557. [PMID: 38790857 PMCID: PMC11121577 DOI: 10.3390/foods13101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Understanding the nuanced interplay between plant polyphenols and starch could have significant implications. For example, it could lead to the development of tailor-made starches for specific applications, from bakinag and brewing to pharmaceuticals and bioplastics. In addition, this knowledge could contribute to the formulation of functional foods with lower glycemic indexes or improved nutrient delivery. Variations in the complexes can be attributed to differences in molecular weight, structure, and even the content of the polyphenols. In addition, the unique structural characteristics of starches, such as amylose/amylopectin ratio and crystalline density, also contribute to the observed effects. Processing conditions and methods will always alter the formation of complexes. As the type of starch/polyphenol can have a significant impact on the formation of the complex, the selection of suitable botanical sources of starch/polyphenols has become a focus. Spectroscopy coupled with chemometrics is a convenient and accurate method for rapidly identifying starches/polyphenols and screening for the desired botanical source. Understanding these relationships is crucial for optimizing starch-based systems in various applications, from food technology to pharmaceutical formulations.
Collapse
Affiliation(s)
- Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
2
|
Zheng LY, Li D, Wang LJ, Wang Y. Tailoring 3D-printed high internal phase emulsion-rice starch gels: Role of amylose in rheology and bioactive stability. Carbohydr Polym 2024; 331:121891. [PMID: 38388064 DOI: 10.1016/j.carbpol.2024.121891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
This study investigated the properties of 3D-printed high internal phase emulsion (HIPE)-rice starch gels, specially tailored for personalized nutrition by co-encapsulating resveratrol and β-carotene. We examined the influence of amylose content on various parameters, including functional groups, linear and nonlinear rheology, printed precision and microstructural stability. Additionally, we assessed the protective efficacy and release in vitro digestion of these gels on the encapsulated bioactive components. Compared to HIPE, HIPE-starch gels differently impacted by amylose content in starches. Low-level amylose weakened the network structure, attributed to amylose mainly responsible for gel formation and weak hydrogen bond interaction between the surface-active molecules and amylose due to gelatinized starch granules rupturing the protein network. Oppositely, high-level amylose led to denser, more gel-like structures with enhanced mechanical strength and reversible deformation resistance, making them suitable for 3D printing. Furthermore, 3D-printed gels with high-level amylose demonstrated well-defined structures, smooth surfaces, stable printing and less dimension deviation. They were also regarded as effective entrapping and delivery systems for resveratrol and β-carotene, protecting them against degradation from environment and damage under the erosion of digestive fluid. Overall, this research offers a straightforward strategy for creating reduced-fat HIPE gels that serve as the carrier for personalized nutraceutical foods.
Collapse
Affiliation(s)
- Lu-Yao Zheng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China.
| | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Wang Y, Pang C, Mohammad-Beigi H, Li X, Wu Y, Lin MKTH, Bai Y, Møller MS, Svensson B. Sequential starch modification by branching enzyme and 4-α-glucanotransferase improves retention of curcumin in starch-alginate beads. Carbohydr Polym 2024; 323:121387. [PMID: 37940281 DOI: 10.1016/j.carbpol.2023.121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 11/10/2023]
Abstract
A new super-branched amylopectin with longer exterior chains was produced from normal maize starch by modification with branching enzyme followed by 4-α-glucanotransferase, and applied for co-entrapment of a curcumin-loaded emulsion in alginate beads. The network structure of the gel beads was obtained with Ca2+-cross-linked alginate and a modest load of retrograded starch. The dual enzyme modified starch contained more and longer α-1,6-linked branch chains than single enzyme modified and unmodified starches and showed superior resistance to digestive enzymes. Alginate beads with or without starch were of similar size (1.69-1.74 mm), but curcumin retention was improved 1.4-2.8-fold in the presence of different starches. Thus, subjecting the curcumin-loaded beads to in vitro simulated gastrointestinal digestion resulted in retention of 70, 43 and 22 % of the curcumin entrapped in the presence of modified, unmodified, or no starch, respectively. Molecular docking provided support for curcumin interacting with starch via hydrogen bonding, hydrophobic contacts and π-π stacking. The study highlights the potential of utilizing low concentration of dual-enzyme modified starch with alginate to create a versatile vehicle for controlled release and targeted delivery of bioactive compounds.
Collapse
Affiliation(s)
- Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Chengfang Pang
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Hossein Mohammad-Beigi
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Xiaoxiao Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yazhen Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Marie Karen Tracy Hong Lin
- National Center for Nanofabrication and Characterization, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Yuxiang Bai
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
4
|
Madamsetty V, Vazifehdoost M, Alhashemi SH, Davoudi H, Zarrabi A, Dehshahri A, Fekri HS, Mohammadinejad R, Thakur VK. Next-Generation Hydrogels as Biomaterials for Biomedical Applications: Exploring the Role of Curcumin. ACS OMEGA 2023; 8:8960-8976. [PMID: 36936324 PMCID: PMC10018697 DOI: 10.1021/acsomega.2c07062] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Since the first report on the pharmacological activity of curcumin in 1949, enormous amounts of research have reported diverse activities for this natural polyphenol found in the dietary spice turmeric. However, curcumin has not yet been used for human application as an approved drug. The clinical translation of curcumin has been hampered due to its low solubility and bioavailability. The improvement in bioavailability and solubility of curcumin can be achieved by its formulation using drug delivery systems. Hydrogels with their biocompatibility and low toxicity effects have shown a substantial impact on the successful formulation of hydrophobic drugs for human clinical trials. This review focuses on hydrogel-based delivery systems for curcumin and describes its applications as anti-cancer as well as wound healing agents.
Collapse
Affiliation(s)
- Vijay
Sagar Madamsetty
- Department
of Biochemistry and Molecular Biology, Mayo
Clinic College of Medicine and Science, Jacksonville, Florida 32224, United States
| | - Maryam Vazifehdoost
- Department
of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman 6718773654, Iran
| | - Samira Hossaini Alhashemi
- Pharmaceutical
Sciences Research Center, Shiraz University
of Medical Sciences, Shiraz 7146864685, Iran
| | - Hesam Davoudi
- Department
of Biology, Faculty of Sciences, University
of Zanjan, Zanjan 4537138111, Iran
| | - Ali Zarrabi
- Department
of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Ali Dehshahri
- Department
of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Hojjat Samareh Fekri
- Student Research
Committee, Kerman University of Medical
Sciences, Kerman 7619813159, Iran
| | - Reza Mohammadinejad
- Research
Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
| |
Collapse
|
5
|
Improved stability and in vitro bioavailability of β-carotene in filled hydrogel prepared from starch blends with different granule sizes. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Research progresses on enzymatic modification of starch with 4-α-glucanotransferase. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Zhang X, Liu Z, Wang A, Zhang S, Nakamura Y, Lin S, Tang Y. Influence of fish skin gelatin-sodium alginate complex stabilized emulsion on benzyl isothiocyanate stability and digestibility in vitro and in vivo. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5680-5689. [PMID: 35388504 DOI: 10.1002/jsfa.11915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/09/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND An emulsion delivery system for benzyl isothiocyanate (BITC) was prepared using fish skin gelatin (FSG) and sodium alginate (Alg). The effects of the FSG-Alg complex on the emulsion stability and BITC release pattern from the emulsion were investigated in vitro and in vivo. RESULTS The storage stability and embedding rate of the 10 g kg-1 FSG and 2.5 g kg-1 Alg (FSG-Alg) emulsion were the highest among all samples. The FSG-Alg complex provided BITC a better protection during in vitro digestion. The microstructure of the FSG-Alg emulsions was more stable during in vitro digestion, and the bioaccessibility and retention rate of BITC were much higher compared to those of the FSG emulsion. The results of the ex vivo everted gut sac of rat intestine study showed that the FSG-Alg emulsion significantly increased the BITC absorption rate in the duodenum. CONCLUSION The FSG-Alg emulsion delivery system is a highly stable system for the delivery of BITC that improves the bioaccessibility of BITC and promotes its absorption in the duodenum. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangyu Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Zhiyu Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Ailin Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Simin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Yoshimasa Nakamura
- Environmental and Life Science, Institute of Academic and Research, Okayama University, Okayama, Japan
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Yue Tang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
8
|
Cui C, Jia Y, Sun Q, Yu M, Ji N, Dai L, Wang Y, Qin Y, Xiong L, Sun Q. Recent advances in the preparation, characterization, and food application of starch-based hydrogels. Carbohydr Polym 2022; 291:119624. [DOI: 10.1016/j.carbpol.2022.119624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023]
|
9
|
Fan Z, Cheng P, Zhang P, Gao Y, Zhao Y, Liu M, Gu J, Wang Z, Han J. A novel multifunctional Salecan/κ-carrageenan composite hydrogel with anti-freezing properties: Advanced rheology, thermal analysis and model fitting. Int J Biol Macromol 2022; 208:1-10. [PMID: 35299074 DOI: 10.1016/j.ijbiomac.2022.03.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022]
Abstract
The multifunctional hydrogels (HGs) have attracted intensive concern in biomedicine, food, and flexible devices. Nevertheless, chemically crosslinked synthetic HGs are commonly under specific restrictions because of their possible biotoxicity. This study focuses on the employment of physical approaches to prepare novel Salecan/κ-carrageenan composites HGs (CHGs) without changing their basic structures. Comprehensive rheological and thermal studies have been performed to investigate their distinctive properties. The data obtained from the tests and model fitting confirmed that the highest activation energy of CHGs was 172,142.2 J/mol, and the maximum equilibrium creep compliance was 0.0085 1/Pa. The sample recovery rate could reach 92.6%, while the anti-freezing temperature can be as low as -20 °C. It is the first report focusing on novel CHGs made from Salecan and κ-carrageenan with ideal anti-freezing ability, enhanced thermostability, good injectability, self-recovery, and other rheological properties that will provide effective support for various future applications.
Collapse
Affiliation(s)
- Zhiping Fan
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Ping Cheng
- Liaocheng High-Tech Biotechnology Co., Ltd, Liaocheng 252059, China
| | - Pan Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Yan Gao
- Liaocheng High-Tech Biotechnology Co., Ltd, Liaocheng 252059, China
| | - Yanna Zhao
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Min Liu
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jiahui Gu
- Anton Paar (Shanghai) Trading Co., Ltd, Shanghai 201103, China
| | - Zhengping Wang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
10
|
|
11
|
Ma P, Zhang Z, Tsai S, Zhang H, Li Y, Yuan F, Wang Q. Curcumin-Loaded Pickering Emulsion Formed by Ultrasound and Stabilized by Metal Organic Framework Optimization. Foods 2021; 10:foods10030523. [PMID: 33802252 PMCID: PMC7998958 DOI: 10.3390/foods10030523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 01/01/2023] Open
Abstract
The ultrasound-assisted preparation of a curcumin-loaded metal organic framework (MOF) UiO-66-NH2 stabilized Pickering emulsion system was carried out in this study. A 3-level-4-factor Box–Behnken design (BBD) and response surface methodology (RSM) analysis were employed to systematically evaluate the effect of different experimental parameters (i.e., ultrasonic power, ultrasonic time, oil content, and MOF content) on curcumin loading capacity (LC) and encapsulation efficiency (EE). The results indicated that ultrasonic power and MOF content significantly affected LC and EE, whereas ultrasonic time and oil content had little effect. A mathematical model for optimizing the preparation of emulsion systems was established. Based on the ridge max analysis, an optimal condition for the newly developed curcumin-loaded MOF-Pickering emulsion was identified, i.e., ultrasonic power 150 W, ultrasonic time 11.17 min, oil content 20.0%, and MOF content 1.10%. At this condition, the LC and EE of curcumin obtained from the experiment reached 7.33% ± 0.54% and 56.18% ± 3.03%, respectively, which were within the prediction range of LC (7.35% ± 0.29%) and EE (54.34% ± 2.45%). The emulsion systems created in this study may find new applications for the delivery of bioactive compounds in food and pharmaceutical areas.
Collapse
Affiliation(s)
- Peihua Ma
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA; (P.M.); (Z.Z.); (S.T.); (H.Z.); (Y.L.)
| | - Zhi Zhang
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA; (P.M.); (Z.Z.); (S.T.); (H.Z.); (Y.L.)
| | - Shawn Tsai
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA; (P.M.); (Z.Z.); (S.T.); (H.Z.); (Y.L.)
| | - Hongchao Zhang
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA; (P.M.); (Z.Z.); (S.T.); (H.Z.); (Y.L.)
| | - Yuan Li
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA; (P.M.); (Z.Z.); (S.T.); (H.Z.); (Y.L.)
| | - Fang Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Qin Wang
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA; (P.M.); (Z.Z.); (S.T.); (H.Z.); (Y.L.)
- Correspondence: ; Tel.: +1-(301)-405-8421
| |
Collapse
|