1
|
Wang R, Liu Y, Wang Y, Bai C, Jiang Y, Yuan M, Zhao L, Chen L. Characterization of the flavor profile of four major Chinese carps using HS-SPME-GC-MS combined with ultra-fasted gas chromatography-electronic nose. Food Chem 2024; 463:141264. [PMID: 39288457 DOI: 10.1016/j.foodchem.2024.141264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
The four major Chinese carps are highly popular for their distinctive nutritional benefits. However, the differences in flavor among these carps remain unclear. This study investigated the flavor profiles of these carps using headspace solid-phase micro-extraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) combined with ultra-fasted gas chromatography electronic nose (GC E-nose). The four major Chinese carps had high protein content (16.68-18.61 %) and low fat levels (0.42-1.29 %). A total of 45 volatile compounds were identified in these carps. Both the GC E-nose and HS-SPME-GC-MS results consistently showed significant flavor profiles differences among these carps, with Ctenopharyngodon Idella (CI) exhibiting the most pronounced distinctions compared to the other three species. Based on VIP >1 and p < 0.05, 10 key compounds including 2-Nonanone, Cyclodecanol, Eugenol, 1,3-Cyclooctadiene, etc., largely contributed to the distinctive overall flavor profile of four major Chinese carps derived mainly from amino acid and fatty acid metabolism.
Collapse
Affiliation(s)
- Renjie Wang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China; Department of Ecology and environment, Yuzhang Normal University, Nanchang 330103, China; Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yu Liu
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China; Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yongcheng Wang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Chunqing Bai
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yong Jiang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Meilan Yuan
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Li Zhao
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Lili Chen
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
2
|
Babic Milijasevic J, Milijasevic M, Lilic S, Djinovic-Stojanovic J, Nastasijevic I, Geric T. Effect of Vacuum and Modified Atmosphere Packaging on the Shelf Life and Quality of Gutted Rainbow Trout ( Oncorhynchus mykiss) during Refrigerated Storage. Foods 2023; 12:3015. [PMID: 37628014 PMCID: PMC10453417 DOI: 10.3390/foods12163015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The quality changes of gutted rainbow trout in vacuum packaging (VP) and modified atmosphere packaging (MAP) with 40% CO2 + 60% N2 (MAP1), 60% CO2 + 40% N2 (MAP2), and 90% CO2 + 10% N2 (MAP3) were evaluated. The samples were stored at 3 ± 0.5 °C, and on days 1, 4, 7, 10, 13, and 16 of storage, microbiological, chemical, and sensory testing was performed. The aerobic plate count (APC) and psychrotrophic bacteria count (PBC) in VP fish exceeded the conventional limit of 7 log cfu/g on day 10, and in MAP1 and MAP2 fish on day 16, whereas in MAP3 fish, their number remained below that limit during the experiment. MAP significantly slowed down the growth of Enterobacteriaceae in trout, and the degree of inhibition increased with increasing CO2 concentration in the gas mixture. The lowest lactic acid bacteria numbers were detected in VP fish, whereas the highest numbers were determined in trout packaged in MAP2 and MAP3. Significantly lower numbers of hydrogen sulfide-producing (H2S) bacteria were detected in fish packed in MAP. Distinct patterns were observed for pH among treatments. The lowest increase in TBARS values was detected in VP and MAP3 fish, whereas in MAP1 and MAP2 fish, the TBARS values were higher than 1 mg MDA/kg on day 16 of storage when a rancid odor was detected. MAP inhibited the increase in total volatile basic nitrogen (TVB-N) content of trout compared to trout packaged in a vacuum. The sensory attributes of trout perceived by the sensory panel changed significantly in all experimental groups during storage. Based primarily on sensory, but also microbial, and chemical parameters, MAP has great potential for preserving fish quality and extending the shelf life of gutted rainbow trout from 7 days in VP to 13 days in MAP1 and MAP2, and to 16 days in MAP3.
Collapse
|
3
|
The impact of marine and terrestrial based extracts on the freshness quality of modified atmosphere packed sea bass fillets. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
4
|
The effect of fishing season and storage conditions on the quality of European plaice (Pleuronectes platessa). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Wang D, Li X, Yang X, Chen S, Li L, Wang Y, Pan C, Zhao Y. Unraveling the effect of the combination of modified atmosphere packaging and ε-polylysine on the physicochemical properties and bacterial community of greater amberjack (Seriola dumerili). Front Nutr 2022; 9:1035714. [DOI: 10.3389/fnut.2022.1035714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
The combined effect of ε-polylysine (PL) and modified atmosphere packaging (MAP; 60% CO2/40% N2) on the bacterial community of greater amberjack filets and their physicochemical properties was evaluated at 4°C. The total viable counts (TVC), psychrotrophic bacterial count, sensory index, texture analysis, and total volatile basic nitrogen (TVB-N) revealed that PL, MAP, and MAP + PL treatment delayed the deterioration of greater amberjack filets. These treatment groups also showed decreased accumulation of biogenic amines. High-throughput 16S rRNA gene sequencing results indicated that these treatments suppressed the growth of Pseudomonas in greater amberjack filets. Furthermore, the MAP + PL treatment group was observed to be more effective than the PL and MAP groups, extending the shelf life of greater amberjack filets by 6 days. This investigation showed that the combination of PL and MAP has the potential to retain the quality and extend the shelf life of greater amberjack.
Collapse
|
6
|
Effects of Modified Atmosphere Packaging with Varied CO 2 and O 2 Concentrations on the Texture, Protein, and Odor Characteristics of Salmon during Cold Storage. Foods 2022; 11:foods11223560. [PMID: 36429151 PMCID: PMC9689085 DOI: 10.3390/foods11223560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
The effect of gas ratio on the growth of bacteria has been well demonstrated, but some adverse effects of modified atmosphere packaging (MAP) on seafoods have also been found. To provide a better understanding of the effects of CO2 and O2 concentrations (CO2 from 40% to 100% and O2 from 0% to 30%) in MAP on the texture and protein contents and odor characteristics of salmon during cold storage, the physiochemical, microbial, and odor indicators were compared with those without treatment (CK). Generally, MAP treatments hindered the increase of microbial counts, total volatile basic nitrogen, and TCA-soluble peptides, and decreased the water-holding capacity, hardness, springiness, and sarcoplasmic and myofibrillar protein contents. The results also indicated that 60%CO2/10%O2/30%N2 was optimal and decreased the total mesophilic bacterial counts by 2.8 log cfu/g in comparison with CK on day 12. In agreement, the concentration of CO2 of 60% showed the lowest myofibrillar protein degradation, and less subsequent loss of hardness. The electronic nose characteristics analysis indicated that 60%CO2/20%O2/20%N2 and 60%CO2/10%O2/30%N2 had the best effect to maintain the original odor profiles of salmon. The correlation analysis demonstrated that microbial growth had a strong relationship with myofibrillar and sarcoplasmic protein content. It can be concluded that 60%CO2/10%O2/30%N2 displayed the best effect to achieve the goal of preventing protein degradation and odor changes in salmon fillets.
Collapse
|
7
|
Qian YF, Yu JY, Yu YJ, Xie J, Yang SP. Effects of immersing treatment of curcumin and piperine combined with vacuum packaging on the quality of salmon ( Salmo salar) during cold chain logistics. Front Nutr 2022; 9:1021280. [PMID: 36407510 PMCID: PMC9671655 DOI: 10.3389/fnut.2022.1021280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2023] Open
Abstract
In order to study the effects of the compound preservatives (curcumin and piperine (CP)) and vacuum packaging (VP) on the quality of salmon during cold chain logistics suffered from temperature abuse, the physiochemical indexes (texture, water holding capacity (WHC), total volatile basic nitrogen (TVB-N), thiobarbituric acid reactive substances (TBARS), free amino acids (FAA) contents), microbial indicators (total mesophilic bacteria count (MBC), total psychrotrophic bacteria count (PBC), H2S-producing bacteria count (HSBC)) were determined, and the moisture changes were explored by near-infrared (NIR) spectroscopy and low-field nuclear magnetic resonance (LF-NMR). The results showed that the treatment of curcumin and piperine in combination with vacuum packaging could maintain the quality of salmon suffered from temperature abuse most effectively. At the end of storage, the MBC of VP+CP was only 4.95 log CFU/g, which was about 1 log CFU/g lower than the control sample stored at the same condition. The combined treatment also retarded the increase of TVB-N, TBARS, and the decrease of hardness, springiness, and a* value, as well as water migration in salmon, contributing to higher water holding capacity and better appearance. Besides, VP+CP retarded the decrease of free glutamate, which contributed to umami taste. Due to the biological activity and safety of the preserves, the combined treatment could be a promising method for preservation of seafood.
Collapse
Affiliation(s)
- Yun-Fang Qian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Jia-Yi Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ying-Jie Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China
| | - Sheng-Ping Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
8
|
Evaluation of storage quality of vacuum-packaged silver Pomfret (Pampus argenteus) treated with combined ultrasound and plasma functionalized liquids hurdle technology. Food Chem 2022; 391:133237. [DOI: 10.1016/j.foodchem.2022.133237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/27/2022] [Accepted: 05/15/2022] [Indexed: 01/06/2023]
|
9
|
Zhang X, Pan C, Chen S, Xue Y, Wang Y, Wu Y. Effects of Modified Atmosphere Packaging with Different Gas Ratios on the Quality Changes of Golden Pompano ( Trachinotus ovatus) Fillets during Superchilling Storage. Foods 2022; 11:1943. [PMID: 35804755 PMCID: PMC9265761 DOI: 10.3390/foods11131943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
The quality changes of golden pompano fillets in air packaging (AP) and modified atmosphere packaging (MAP) with 30% CO2/70% N2, 50% CO2/50% N2, and 70% CO2/30% N2 were evaluated under superchilling (−3 °C). The results showed that the whiteness of fillets decreased during storage. The rate of pH increase of MAP was significantly slower than in AP groups, in which MAP with 70% CO2/30% N2 effectively suppressed the PH. Interestingly, the hardness decreased on day five following the treatments, followed by a relatively stationary trend. MAP could greatly suppress the increase of total volatile basic nitrogen (TVB-N) contents of fillets compared to fillets packed in AP. All MAP groups of fillets maintained first-grade freshness throughout storage, while the AP samples decreased to second-grade freshness on about the 25th day. MAP with 70% CO2/30% N2 and MAP with 50% CO2/50% N2 had the best results in inhibiting protein degeneration and explanation. Unexpectedly, drip loss of fillets in MAP far exceeded the AP group during storage, which causes sensory discomfort. Anaerobic plate count (APC) of fillets in AP exceeded the consumption limit of 6.7 log CFU/g on day 26 (6.75 log CFU/g on the 26th day), whereas the MAP was still microbiologically acceptable after 30 days of storage (6.43, 6.41, 6.22 log CFU/g, respectively). Considering physicochemical and microbiological parameters, the shelf life of fillets packed in AP was 25 days. MAP treatments could prolong the shelf life of fillets by ~4−5 days compared to AP. Overall, MAP with 70% CO2/30% N2 gas ratio was best for inhibiting the quality deterioration of fillets. Furthermore, principal component analysis (PCA) was performed to evaluate the critical indicators of quality deterioration of the fillets. Two principal components were determined by dimensionality reduction, in which the contribution of the first principal component was centrifugal loss > hardness > TVB-N > APC > CO2 solubility > TBARs > drip loss > pH, which mainly reflected the degree of microbial proliferation, protein hydrolysis, and oxidation. The contribution of the second principal component was pH > TBRAs > drip loss > APC > CO2 solubility > TVB-N > hardness > centrifugal loss, indicating a high correlation between lipid oxidation and microbial proliferation index.
Collapse
Affiliation(s)
- Xiaofan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Z.); (Y.X.)
- Sanya Tropical Fisheries Research Institute, Sanya 572000, China;
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Centre for Aquatic Product Processing Technology, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
| | - Chuang Pan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Centre for Aquatic Product Processing Technology, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
| | - Shengjun Chen
- Sanya Tropical Fisheries Research Institute, Sanya 572000, China;
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Z.); (Y.X.)
| | - Yueqi Wang
- Sanya Tropical Fisheries Research Institute, Sanya 572000, China;
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Centre for Aquatic Product Processing Technology, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Centre for Aquatic Product Processing Technology, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
| |
Collapse
|
10
|
Yin C, Wang J, Qian J, Xiong K, Zhang M. Quality changes of rainbow trout stored under different packaging conditions and mathematical modeling for predicting the shelf life. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Pinto de Rezende L, Barbosa J, Teixeira P. Analysis of Alternative Shelf Life-Extending Protocols and Their Effect on the Preservation of Seafood Products. Foods 2022; 11:foods11081100. [PMID: 35454688 PMCID: PMC9025290 DOI: 10.3390/foods11081100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/25/2022] Open
Abstract
Seafood is essential to a healthy and varied diet due to its highly nutritious characteristics. However, seafood products are highly perishable, which results in financial losses and quality concerns for consumers and the industry. Due to changes in consumer concerns, demand for healthy products has increased. New trends focusing on reducing synthetic preservatives require innovation and the application of additional or alternative strategies to extend the shelf life of this type of product. Currently, refrigeration and freezing storage are the most common methods for fish preservation. However, refrigeration alone cannot provide long shelf-life periods for fish, and freezing worsens sensorial characteristics and consumer interest. Therefore, the need to preserve seafood for long periods without exposing it to freezing temperatures exists. This review focuses on the application of other approaches to seafood products, such as biodegradable films and coating technology; superchilling; irradiation; high-pressure processing; hyperbaric storage; and biopreservation with lactic acid bacteria, bacteriocins, or bacteriophages. The efficiency of these techniques is discussed based on their impact on microbiological quality, sensorial degradation, and overall preservation of the product’s nutritional properties. Although these techniques are already known, their use in the industrial processing of seafood is not widespread. Thus, the novelty of this review is the aggregation of recent studies on shelf life extension approaches, which provide useful information for the selection of the most appropriate technology and procedures and industrial innovation. Despite the fact that all techniques inhibit or delay bacterial proliferation and product decay, an undesirable sensory impact may occur depending on the treatment conditions. Although no technique appears to replace refrigeration, the implementation of additional treatments in the seafood processing operation could reduce the need for freezing, extending the shelf life of fresh unfrozen products.
Collapse
|
12
|
Moreira RV, Vieira CP, Galvan D, Castro VS, Lima RS, Mutz YS, Delgado KF, Rosario AIL, Mano SB, Costa MP, Conte-Junior CA. Pequi ( Caryocar brasiliense) Waste Extract as a Synergistic Agent in the Microbial and Physicochemical Preservation of Low-Sodium Raw Goat Cheese. Front Nutr 2022; 9:855115. [PMID: 35464018 PMCID: PMC9020873 DOI: 10.3389/fnut.2022.855115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
The growth of spoilage and pathogenic bacteria during storage represents significant losses in marketing raw milk cheeses. Thus, reducing NaCl in these products is challenging, as sodium has a critical antimicrobial role. Despite advances in non-thermal technologies, the short shelf life still limits the availability of raw goat cheese. Thus, combined preservation methods can be promising because their synergies can extend shelf life more effectively. In this context, Principal Component Analysis (PCA) was applied to variables to investigate the effect of pequi waste extract (PWE), a native Brazilian fruit, combined with UV-C radiation (CEU) and vacuum packaging (CEV) on the preservation of low-sodium raw goat cheese. CEV samples had lower loadings for Staphylococcus subsp. and Enterobacteriaceae than other treatments in PC2, having a count's reduction up to 3-fold (P < 0.05) compared to vacuum alone. In contrast, CEU showed an increase of up to 1.2-fold on staphylococcal count compared to UV-C alone. Still, the addition of PWE to UV-C-treated cheeses resulted in 8.5% protein loss. Furthermore, PWE, especially in CEV, delayed post-acidification during storage. It made CEV up to 4.5 and 1.6-fold more stable for color and texture, respectively than vacuum alone. These data strongly suggest that PWE may be a novel and promising synergistic agent in the microbial and physicochemical preservation of low-sodium raw milk cheese when combined with the vacuum.
Collapse
Affiliation(s)
- Rodrigo V. Moreira
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carla P. Vieira
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Rio de Janeiro, Brazil
| | - Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Rio de Janeiro, Brazil
| | - Vinicius S. Castro
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Rio de Janeiro, Brazil
| | - Rayssa S. Lima
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Yhan S. Mutz
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Rio de Janeiro, Brazil
| | - Karina F. Delgado
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Anisio Iuri L. Rosario
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Inspection and Technology of Milk and Derivatives, Faculty of Veterinary Medicine, Federal University of Bahia, Salvador, Brazil
| | - Sérgio B. Mano
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
| | - Marion P. Costa
- Laboratory of Inspection and Technology of Milk and Derivatives, Faculty of Veterinary Medicine, Federal University of Bahia, Salvador, Brazil
| | - Carlos A. Conte-Junior
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Rio de Janeiro, Brazil
- Laboratory of Inspection and Technology of Milk and Derivatives, Faculty of Veterinary Medicine, Federal University of Bahia, Salvador, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Effects of Modified Atmosphere Packaging, Storage Temperature, and Absorbent Pads on the Quality of Fresh Cape Hake Fish Fillets. COATINGS 2022. [DOI: 10.3390/coatings12030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigated the effects of modified atmosphere packaging (MAP), storage temperature, and the use of absorbent pads (PAD) on the quality attributes of Cape hake (Merluccius capensis) fish fillets. Fresh Cape hake fillets were packaged under active-MA (40% CO2 + 30% O2 + 30% N2) or passive-MA (0.039% CO2 + 20.95% O2 + 78% N2), with and without PAD, and stored at 0 °C, 4 °C, and 8 °C (to mimic abuse temperature). The control fresh fillets were stored under passive-MAP without PAD at 0 °C, 4 °C, and 8 °C. Headspace O2 gas composition continuously decreased below critical limits under passive-MAP, with an increase in storage temperature. Similarly, O2 levels decreased under active-MAP but did not reach critical levels, with the lowest being 9.5% at 0 °C. The interaction of storage temperature and modified atmosphere had a significant effect on quality attributes of Cape hake fillets. Drip loss was higher in active-MAP packaged fillets without PAD (0.64%) than passive-MAP packaged fillets without PAD (0.27%). Drip loss was significantly reduced when using absorbent pads (p < 0.05). Firmness, color, and pH were better maintained under active-MAP at the lowest temperature of 0 °C. Firmness (work of shear) of active-MA packaged fillets on day 12 at 0 °C and 4 °C was 527 N/s and 506 N/s, respectively. Fillets packaged under active-MAP at 0 °C had longer shelf-life than control passive-MAP fillets.
Collapse
|
14
|
The Influence of Hypothermia Hibernation Combined with CO2 Anesthesia on Life and Storage Quality of Large Yellow Croaker (Pseudosciaena crocea). Foods 2022; 11:foods11040514. [PMID: 35205999 PMCID: PMC8871444 DOI: 10.3390/foods11040514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
We explore the feasibility of the long-term transportation of live large yellow croakers (Pseudosciaena crocea) using the combined method of CO2 anesthesia and hypothermia hibernation, and its effect on the quality of recovered fish stored at 4 °C. Fish treated with CO2 anesthesia at a 2 ppm/s aeration rate were cooled at 3 °C/h to hibernate survived for 36 h at 8 °C in seawater. This method resulted in better survival rates and time, and a lower operational time than hypothermia hibernation or CO2 anesthesia methods. The results of a blood analysis indicated that the stress experienced by the fish during hibernation was mitigated, but existent after recovery. The drip loss rate of the ordinary muscle of hibernated fish was significantly different from that of the control group at 4 °C, but there was no significant difference in the pH, lactic acid content, and color during early storage. Furthermore, hibernation did not affect springiness and chewiness. Thus, the combination of CO2 anesthesia and hibernation may improve the survival and operation efficiency of fish in long-term transportation. However, this method affects the quality of fish after long-term storage. Thus, hibernated fish should be consumed after appropriate domestication or immediately after recovery.
Collapse
|
15
|
Priyadarshini MB, Majumder RK, Maurya P. Effect of vacuum packaging on the shelf‐life of shrimp analog prepared from
Pangasionodon hypophthalmus
surimi during refrigerated storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ranendra Kumar Majumder
- Department of Fish Processing Technology and Engineering, College of Fisheries CAU(I) West Tripura India
| | - Pradip Maurya
- Department of Fish Processing Technology and Engineering, College of Fisheries CAU(I) West Tripura India
| |
Collapse
|
16
|
Recent Developments in Seafood Packaging Technologies. Foods 2021; 10:foods10050940. [PMID: 33923022 PMCID: PMC8145365 DOI: 10.3390/foods10050940] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Seafood products are highly perishable, owing to their high water activity, close to neutral pH, and high content of unsaturated lipids and non-protein nitrogenous compounds. Thus, such products require immediate processing and/or packaging to retain their safety and quality. At the same time, consumers prefer fresh, minimally processed seafood products that maintain their initial quality properties. The present article aims to review the literature over the past decade on: (i) innovative, individual packaging technologies applied to extend the shelf life of fish and fishery products, (ii) the most common combinations of the above technologies applied as multiple hurdles to maximize the shelf life of seafood products, and (iii) the respective food packaging legislation. Packaging technologies covered include: Modified atmosphere packaging; vacuum packaging; vacuum skin packaging; active food packaging, including oxygen scavengers; carbon dioxide emitters; moisture regulators; antioxidant and antimicrobial packaging; intelligent packaging, including freshness indicators; time–temperature indicators and leakage indicators; retort pouch processing and edible films; coatings/biodegradable packaging, used individually or in combination for maximum preservation potential.
Collapse
|