1
|
Lara-Abia S, Lobo G, Pérez-Pascual N, Welti-Chanes J, Cano MP. Improvement in the Stability and Bioaccessibility of Carotenoid and Carotenoid Esters from a Papaya By-Product Using O/W Emulsions. Foods 2023; 12:2654. [PMID: 37509746 PMCID: PMC10379124 DOI: 10.3390/foods12142654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of the present work was to improve the stability and bioaccessibility of carotenoids from green oil extracts obtained from papaya by-products using oil-in-water (O/W) emulsions. The effects of different concentrations of pectin (1%, 2%, and 3%), a high-molecular-size emulsifier, together with Tween 20, a low-molecular-size emulsifier, high-speed homogenization conditions (time: 2, 3, 4, and 5 min; rpm: 9500, 12,000, 14,000, and 16,000 rpm), and high-pressure homogenization (HPH) (100 MPa for five cycles) were evaluated to determine the optimal conditions for obtaining O/W stable emulsions with encapsulated carotenoids. Soybean, sunflower, and coconut oils were used to formulate these O/W emulsions. The bioaccessibility of the main individual encapsulated papaya carotenoids was evaluated using the INFOGEST digestion methodology. In addition, the microstructures (confocal and optical microscopy) of the O/W carotenoid emulsions and their behavior during in vitro digestion phases were studied. Sunflower O/W carotenoid emulsions showed smaller mean particle size, higher negative ζ-potential, and higher viscosity than soybean O/W emulsions. Particle size reduction in the O/W emulsions using the HPH process improved the bioaccessibility of papaya encapsulated carotenoids. In these O/W emulsions, depending on the vegetable oil, lycopene was the carotenoid with the highest bioaccessibility (71-64%), followed by (all-E)-β-carotene (18%), (all-E)-β-cryptoxanthin (15%), and (all-E)-β-cryptoxanthin laurate (7-4%). These results highlight the potential of using green carotenoid papaya extracts to formulate O/W emulsions to enhance carotenoid bioactivity by efficiently preventing degradation and increasing in vitro bioaccessibility.
Collapse
Affiliation(s)
- Sara Lara-Abia
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolas Cabrera 9, 28049 Madrid, Spain
- School of Sciences and Engineering, Tecnologico de Monterrey (ITESM), Monterrey 64849, NL, Mexico
| | - Gloria Lobo
- Department of Crop Production in Tropical and Subtropical Areas, Instituto Canario de Investigaciones Agrarias (ICIA), 38297 Tenerife, Spain
| | - Noelia Pérez-Pascual
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Jorge Welti-Chanes
- School of Sciences and Engineering, Tecnologico de Monterrey (ITESM), Monterrey 64849, NL, Mexico
| | - M Pilar Cano
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolas Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
2
|
Okhlopkova ZM, Razgonova MP, Rozhina ZG, Egorova PS, Golokhvast KS. Dracocephalum jacutense Peschkova from Yakutia: Extraction and Mass Spectrometric Characterization of 128 Chemical Compounds. Molecules 2023; 28:molecules28114402. [PMID: 37298879 DOI: 10.3390/molecules28114402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Dracocephalum jacutense Peschkova is a rare and endangered species of the genus Dracocephalum of the Lamiaceae family. The species was first described in 1997 and listed in the Red Data Book of Yakutia. Significant differences in the multicomponent composition of extracts from D. jacutense collected in the natural environment and successfully introduced in the Botanical Garden of Yakutsk were identified by a team of authors earlier in a large study. In this work, we studied the chemical composition of the leaves, stem, and inflorescences of D. jacutense using the tandem mass spectrometry method. Only three cenopopulations of D. jacutense were found by us in the territory of the early habitat-in the vicinity of the village of Sangar, Kobyaysky district of Yakutia. The aboveground phytomass of the plant was collected, processed and dried as separate parts of the plant: inflorescences, stem and leaves. Firstly, a total of 128 compounds, 70% of which are polyphenols, were tentatively identified in extracts of D. jacutense. These polyphenol compounds were classified as 32 flavones, 12 flavonols, 6 flavan-3-ols, 7 flavanones, 17 phenolic acids, 2 lignans, 1 dihydrochalcone, 4 coumarins, and 8 anthocyanidins. Other chemical groups were presented as carotenoids, omega-3-fatty acids, omega-5-fatty acids, amino acids, purines, alkaloids, and sterols. The inflorescences are the richest in polyphenols (73 polyphenolic compounds were identified), while 33 and 22 polyphenols were found in the leaves and stems, respectively. A high level of identity for polyphenolic compounds in different parts of the plant is noted for flavanones (80%), followed by flavonols (25%), phenolic acids (15%), and flavones (13%). Furthermore, 78 compounds were identified for the first time in representatives of the genus Dracocephalum, including 50 polyphenolic compounds and 28 compounds of other chemical groups. The obtained results testify to the unique composition of polyphenolic compounds in different parts of D. jacutense.
Collapse
Affiliation(s)
- Zhanna M Okhlopkova
- Department of Biology, North-Eastern Federal University, Belinsky Str. 58, 677000 Yakutsk, Russia
| | - Mayya P Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Institute of Biotechnology, Bioengineering and Food System, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
| | - Zoya G Rozhina
- Department of Biology, North-Eastern Federal University, Belinsky Str. 58, 677000 Yakutsk, Russia
| | - Polina S Egorova
- Yakutsk Botanical Garden, Institute for Biological Problems of Cryolithozone Siberian Branch of Russian Academy Sciences, Lenina pr. 41, 677000 Yakutsk, Russia
| | - Kirill S Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Institute of Biotechnology, Bioengineering and Food System, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, Centralnaya 2b, 630501 Krasnoobsk, Russia
| |
Collapse
|
3
|
Zostera marina L.: Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass. SEPARATIONS 2022. [DOI: 10.3390/separations9070182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Three types of Zostera marina L. collection were extracted using the supercritical CO2-extraction method. For the purposes of supercritical CO2-extraction, old seagrass ejection on the surf edge, fresh seagrass ejection on the surf edge and seagrass collected in water were used. Several experimental conditions were investigated in the pressure range 50–350 bar, with the used volume of co-solvent ethanol in the amount of 1% in the liquid phase at a temperature in the range of 31–70 °C. The most effective extraction conditions are: pressure 250 Bar and temperature 60 °C for Z. marina collected in sea water. Z. marina contain various phenolic compounds and sulfated polyphenols with valuable biological activity. Tandem mass-spectrometry (HPLC-ESI–ion trap) was applied to detect target analytes. 77 different biologically active components have been identified in Z. marina supercritical CO2-extracts. 38 polyphenols were identified for the first time in Z. marina.
Collapse
|
4
|
Dracocephalum palmatum S. and Dracocephalum ruyschiana L. Originating from Yakutia: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dracocephalum palmatum S. and Dracocephalum ruyschiana L. contain a large number of target analytes, which are biologically active compounds. High performance liquid chromatography (HPLC) in combination with an ion trap (tandem mass spectrometry) was used to identify target analytes in extracts of D. palmatum S. and D. ruyschiana L. originating from Yakutia. The results of initial studies revealed the presence of 114 compounds, of which 92 were identified for the first time in the genus Dracocephalum. New identified metabolites belonged to 17 classes, including 16 phenolic acids and their conjugates, 18 flavones, 5 flavonols, 2 flavan-3-ols, 1 flavanone, 2 stilbenes, 10 anthocyanins, 1 condensed tannin, 2 lignans, 6 carotenoids, 3 oxylipins, 2 amino acids, 3 sceletium alkaloids, 3 carboxylic acids, 8 fatty acids, 1 sterol, and 3 terpenes, along with 6 miscellaneous compounds. It was shown that extracts of D. palmatum are richer in the spectrum of polyphenolic compounds compared with extracts of D. ruyschiana, according to a study of the presence of these compounds in extracts, based on the results of mass spectrometric studies.
Collapse
|
5
|
Lara-Abia S, Welti-Chanes J, Cano MP. Effect of Ultrasound-Assisted Extraction of Carotenoids from Papaya ( Carica papaya L. cv. Sweet Mary) Using Vegetable Oils. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030638. [PMID: 35163902 PMCID: PMC8839964 DOI: 10.3390/molecules27030638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/28/2023]
Abstract
By-products from fruits and are of great interest for their potential use in the food industry due to their high content of bioactive compounds. Herein, we examined the ultrasound-assisted extraction (UAE) of carotenoid and carotenoid esters from papaya pulp and peel using soybean oil and sunflower oil as alternative green solvents. Response surface methodology (RSM) was established to optimize the UAE process. Three independent variables, ultrasonic amplitude (20–60%), time (10–60 min), and co-solvent percentage (ethanol) (5–20%, v/v), were applied. The highest total carotenoid content in the UAE extracts was obtained from papaya pulp extracts (58.7 ± 1.6 and 56.0 ± 1.5 μg carotenoids/g oil) using soybean oil and sunflower oil, respectively (60% amplitude/ 10 min/ 20% ethanol). On the other hand, the highest carotenoid content (52.0 ± 0.9 μg carotenoids/g oil) was obtained from papaya peel using soybean oil applying the UAE process (20% amplitude/ 77 min/ 20% ethanol); a minor content of 39.3 ± 0.5 μg carotenoids/g oil was obtained from papaya peel using sunflower oil at 60% amplitude/ 60 min/ 5% ethanol. Lycopene was the most abundant carotenoid among all individual carotenoids observed in papaya oil extracts, obtaining the highest yields of this carotenoid when papaya pulp and peel were extracted using soybean oil (94% and 81%, respectively) and sunflower oil (95% and 82%, respectively). Great extraction of xanthophyll esters was detected using 20% of ethanol in the vegetable oil extraction solvent (v/v). High correlations (>0.85) was obtained between total carotenoid content and color determination in the UAE oil extracts. UAE vegetable oil extracts enriched with carotenoids from papaya by-products could be useful to formulate new food ingredients based on emulsions with interesting potential health benefits.
Collapse
Affiliation(s)
- Sara Lara-Abia
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL) (CSIC-UAM), 28001 Madrid, Spain;
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64000, Mexico;
| | - Jorge Welti-Chanes
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64000, Mexico;
| | - M. Pilar Cano
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL) (CSIC-UAM), 28001 Madrid, Spain;
- Correspondence:
| |
Collapse
|
6
|
Razgonova M, Okhlopkona Z, Golokhvast K. Research of Dracocephalum palmatum S. and Dracocephalum ruyschiana L. originating from Yakutia and identification of metabolites by tandem mass spectrometry. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224301010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dracocephalum palmatum Stephan and Dracocephalum ruyschiana L. contains a large number of target analytes, which are biologically active compounds. High performance liquid chromatography (HPLC) in combination with a BRUKER DALTONIKS ion trap (tandem mass spectrometry) was used to identify target analytes in extracts of D. palmatum Stephan and D. ruyschiana L., originating from Yakutia. The results of initial studies revealed the presence of 61 compounds, of which 53 were identified for the first time in genus Dracocephalum. These are flavones: Apigenin 8-C-pentoside-6-C-hexoside, Apigenin 7-sulfate; Chrysin 6-C-glucoside, Chrysin glucuronide; flavanols: Kaempferol, Dihydrokaempferol, Astragalin; flavan-3-ol (epi)Catechin, phenolic acids: Methylgallic acid; Hydroxy methoxy dimethylbenzoic acid; Ellagic acid; Caffeoylshikimic acid; Prolithospermic acid; 3,4-O-dicaffeoylquinic acid; salvianolic acid G; stilbenes pinosylvin and resveratrol; anthocyanins Petunidin, Pelargonidin-3-O-glucoside; Peonidin-3-O-glucoside; Cyanidin 3-(acetyl)hexose; perillic acid; lignans: Hinokinin, Dimethyl-secoisolariciresinol, Podophyllotoxin, carotenoids: Apocarotenal, 5,8-epoxy-alpha-carotene; etc.
Collapse
|
7
|
Lara-Abia S, Welti-Chanes J, Cano MP. Effect of High Hydrostatic Pressure on the Extractability and Bioaccessibility of Carotenoids and Their Esters from Papaya ( Carica papaya L.) and Its Impact on Tissue Microstructure. Foods 2021; 10:2435. [PMID: 34681484 PMCID: PMC8535580 DOI: 10.3390/foods10102435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022] Open
Abstract
High hydrostatic pressure (HHP) is a non-thermal technology widely used in the industry to extend food shelf-life and it has been proven to enhance the extractability of secondary metabolites, such as carotenoids, in plant foods. In this study, fresh-cut papaya pulp of varieties (Sweet Mary, Alicia and Eksotika) from the Canary Islands (Spain) were submitted to the HHP process (pressure: 100, 350 and 600 MPa; time: come-up time (CUT) and 5 min) to evaluate, for the first time, individual carotenoid and carotenoid ester extractability and to assess their bioaccessibility using an in vitro simulated gastrointestinal digestion assay, following the standardized INFOGEST® methodology. In addition, changes in papaya pulp microstructure after HHP treatments and during the different phases of the in vitro digestion were evaluated with optical light microscopy. HPLC-DAD (LC-MS/MS (APCI+)) analyses revealed that HHP treatments increased the carotenoid content, obtaining the highest extractability in pulp of the Sweet Mary papaya variety treated at 350 MPa during 5 min (4469 ± 124 μg/100 g fresh weight) which was an increase of 269% in respect to the HHP-untreated control sample. The highest carotenoid extraction value within each papaya variety among all HHP treatments was observed for (all-E)-lycopene, in a range of 98-1302 μg/100 g fresh weight (23-344%). Light micrographs of HHP-treated pulps showed many microstructural changes associated to carotenoid release related to the observed increase in their content. Carotenoids and carotenoid esters of papaya pulp submitted to in vitro digestion showed great stability; however, their bioaccessibility was very low due to the low content of fatty acids in papaya pulp necessary for the micellarization process. Further studies will be required to improve papaya carotenoid and carotenoid ester bioaccessibility.
Collapse
Affiliation(s)
- Sara Lara-Abia
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL) (CSIC-UAM), 28001 Madrid, Spain;
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64000, Mexico;
| | - Jorge Welti-Chanes
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64000, Mexico;
| | - M. Pilar Cano
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL) (CSIC-UAM), 28001 Madrid, Spain;
| |
Collapse
|