1
|
Guo S, Wang D, Li Y, Li J, Du J. Comparison of Aroma Profiles of Whiskeys Fermented from Different Grain Ingredients. Foods 2024; 13:2031. [PMID: 38998537 PMCID: PMC11241441 DOI: 10.3390/foods13132031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Different grain sources of whiskey have great potential for aroma expression. In this paper, four whiskeys fermented from different raw materials (barley, wheat, highland barley, and sorghum) were compared. Gas chromatography-mass spectrometry (GC-MS) and sensory evaluation were used to determine the composition of the aromatic compounds. A correlation analysis was further conducted between the aromatic compounds and sensory evaluations. Barley whiskey and wheat whiskey had more pronounced fruity, floral, and grain aromas, attributed to esters and terpenes. Barley whiskey had the most compounds (55), followed by highland barley whiskey (54). Highland barley whiskey had the greatest number of unique aroma compounds (seven). It exhibited a unique cocoa aroma related to concentrations of trans-2-nonenal, γ-nonanolactone, 1-nonanol, isoamyl lactate, 2-butanol, and 6-methyl-5-hepten-2-one. Sorghum whiskey had a specific leather and mushroom aroma attributed to 6-methyl-5-hepten-2-one, ethyl lactate, ethyl caprate, phenethyl octanoate, farnesol, α-terpineol, 3-methyl-1-pentanol, and methyleugenol. Alcohols were the main aroma components of grain whiskeys. Isoamyl alcohol (231.59~281.39 mg/L), phenylethyl alcohol (5.755~9.158 mg/L), citronellol (0.224~4.103 mg/L), β-damascenone (0.021~2.431 mg/L), geraniol (0.286~1.416 mg/L), isoamyl acetate (0.157~0.918 mg/L), phenylacetaldehyde (0.162~0.470 mg/L), linalool (0.024~0.148 mg/L), 1-octen-3-ol (0.016~0.145 mg/L), trans-2-nonenal (0.027~0.105 mg/L), and trans-2-octen-1-ol (0.011~0.054 mg/L) were all important aroma compounds in the whiskeys.
Collapse
Affiliation(s)
- Siqian Guo
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Haidian District, Beijing 100083, China; (S.G.); (D.W.); (J.L.)
- Faculty of Food Science and Engineering, China Agricultural University-Sichuan Advanced Agricultural & Industrial Institute, Chengdu 611430, China
| | - Dan Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Haidian District, Beijing 100083, China; (S.G.); (D.W.); (J.L.)
- Faculty of Food Science and Engineering, China Agricultural University-Sichuan Advanced Agricultural & Industrial Institute, Chengdu 611430, China
| | - Yanting Li
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, China;
| | - Jingming Li
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Haidian District, Beijing 100083, China; (S.G.); (D.W.); (J.L.)
- Faculty of Food Science and Engineering, China Agricultural University-Sichuan Advanced Agricultural & Industrial Institute, Chengdu 611430, China
| | - Jinkun Du
- Faculty of Food Science and Engineering, China Agricultural University-Sichuan Advanced Agricultural & Industrial Institute, Chengdu 611430, China
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, China;
| |
Collapse
|
2
|
Hu R, Duan C, Lan Y. Investigating the Effects of Distillation System, Geographical Origin, and Aging Time on Aroma Characteristics in Brandy Using an Untargeted Metabonomic Approach. Foods 2024; 13:1922. [PMID: 38928861 PMCID: PMC11202679 DOI: 10.3390/foods13121922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, the influence of the distillation system, geographical origin, and aging time on the volatiles of brandy was investigated. An untargeted metabolomics approach was used to classify the volatile profiles of brandies based on the presence of different distillation systems and geographical origins. Through the predictive ability of PLS-DA models, it was found that higher alcohols, C13-norisopenoids, and furans could serve as key markers to discriminate between continuous stills and pot stills, and the contents of C6/C9 compounds, C13-norisoprenoids, and sesquiterpenoids were significantly affected by brandy origin. A network analysis illustrated that straight-chain fatty acid ethyl esters gradually accumulated during aging, and several higher alcohols, furfural, 5-methylfurfural, 4-ethylphenol, TDN, β-damascenone, naphthalene, styrene, and decanal were also positively correlated with aging time. This study provides effective methods for distinguishing brandies collected from different distillation systems and geographical origins and summarizes an overview of the changes in volatile compounds during the aging process.
Collapse
Affiliation(s)
- Ruiqi Hu
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.H.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.H.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yibin Lan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.H.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
3
|
Kalogiouri NP, Manousi N, Ferracane A, Zachariadis GA, Koundouras S, Samanidou VF, Tranchida PQ, Mondello L, Rosenberg E. A novel headspace solid-phase microextraction arrow method employing comprehensive two-dimensional gas chromatography-mass spectrometry combined with chemometric tools for the investigation of wine aging. Anal Chim Acta 2024; 1304:342555. [PMID: 38637039 DOI: 10.1016/j.aca.2024.342555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Omics is used as an analytical tool to investigate wine authenticity issues. Aging authentication ensures that the wine has undergone the necessary maturation and developed its desired organoleptic characteristics. Considering that aged wines constitute valuable commodities, the development of advanced omics techniques that guarantee aging authenticity and prevent fraud is essential. RESULTS Α solid phase microextraction Arrow method combined with comprehensive two-dimensional gas chromatography-mass spectrometry was developed to identify volatiles in red wines and investigate how aging affects their volatile fingerprint. The method was optimized by examining the critical parameters that affect the solid phase microextraction Arrow extraction (stirring rate, extraction time) process. Under optimized conditions, extraction took place within 45 min under stirring at 1000 rpm. In all, 24 monovarietal red wine samples belonging to the Xinomavro variety from Naoussa (Imathia regional unit of Macedonia, Greece) produced during four different vintage years (1998, 2005, 2008 and 2015) were analyzed. Overall, 237 volatile compounds were tentatively identified and were treated with chemometric tools. Four major groups, one for each vintage year were revealed using the Hierarchical Clustering Analysis. The first two Principal Components of Principal Component Analysis explained 86.1% of the total variance, showing appropriate grouping of the wine samples produced in the same crop year. A two-way orthogonal partial least square - discriminant analysis model was developed and successfully classified all the samples to the proper class according to the vintage age, establishing 17 volatile markers as the most important features responsible for the classification, with an explained total variance of 88.5%. The developed prediction model was validated and the analyzed samples were classified with 100% accuracy according to the vintage age, based on their volatile fingerprint. SIGNIFICANCE The developed methodology in combination with chemometric techniques allows to trace back and confirm the vintage year, and is proposed as a novel authenticity tool which opens completely new and hitherto unexplored possibilities for wine authenticity testing and confirmation.
Collapse
Affiliation(s)
- Natasa P Kalogiouri
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060, Vienna, Austria.
| | - Natalia Manousi
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060, Vienna, Austria
| | - Antonio Ferracane
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060, Vienna, Austria; Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc 98168 - Messina, Italy.
| | - George A Zachariadis
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Stefanos Koundouras
- Laboratory of Viticulture, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Peter Q Tranchida
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc 98168 - Messina, Italy
| | - Luigi Mondello
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc 98168 - Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc 98168 - Messina, Italy
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060, Vienna, Austria
| |
Collapse
|
4
|
Okolo CA, Kilcawley KN, O'Connor C. Recent advances in whiskey analysis for authentication, discrimination, and quality control. Compr Rev Food Sci Food Saf 2023; 22:4957-4992. [PMID: 37823807 DOI: 10.1111/1541-4337.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
In order to safeguard authentic whiskey products from fraudulent or counterfeit practices, high throughput solutions that provide robust, rapid, and reliable solutions are required. The implementation of some analytical strategies is quite challenging or costly in routine analysis. Qualitative screening of whiskey products has been explored, but due to the nonspecificity of the chemical compounds, a more quantitative confirmatory technique is required to validate the result of the whiskey analysis. Hence, combining analytical and chemometric methods has been fundamental in whiskey sample differentiation and classification. A comprehensive update on the most relevant and current analytical techniques, including spectroscopic, chromatographic, and novel technologies employed within the last 5 years in whiskey analysis for authentication, discrimination, and quality control, are presented. Furthermore, the technical challenges in employing these analytical techniques, future trends, and perspectives are emphasized.
Collapse
Affiliation(s)
- Chioke A Okolo
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
- School of Food Science & Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Kieran N Kilcawley
- Food Quality & Sensory Science Department, Teagasc Food Research Centre, Co Cork, Ireland
- School of Food and Nutritional Sciences, College of Science, Engineering and Food Science, University College Cork, Cork, Ireland
| | - Christine O'Connor
- School of Food Science & Environmental Health, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Corbion C, Smith-Ravin J, Marcelin O, Bouajila J. An Overview of Spirits Made from Sugarcane Juice. Molecules 2023; 28:6810. [PMID: 37836653 PMCID: PMC10574467 DOI: 10.3390/molecules28196810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Among the family of sugarcane spirits, those made from juice are diverse and often produced in a traditional way. They must be distinguished from other sugarcane spirits, which are more widely produced and made from other sugarcane derivatives, such as molasses. These alcoholic beverages contribute significantly to the socio-economic development of many countries. However, despite ancestral know-how, there is a lack of contemporary data required to characterize some sugarcane juice spirits (SCJSs) and to overcome the current and future threats that producers will have to face. While preserving their authenticity and specificity, SCJS producers expect to improve and ensure sufficient yield and a superior quality product. Even if the scientific knowledge on these spirits is not comparable, the available data could help identify the critical points to be improved in the making process. This review aims to present the main SCJSs encountered worldwide, defining their specific features through some important aspects with, notably, references to the complex notion of terroir. To continue, we discuss the main steps of the SCJS process from harvesting to aging. Finally, we expose an inventory of SCJS's chemical compositions and of their sensory description that define the specific organoleptic properties of these spirits.
Collapse
Affiliation(s)
- Claudine Corbion
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS-INPT-UPS, 31062 Toulouse, France;
| | - Juliette Smith-Ravin
- Groupe BIOSPHERES, Campus de Schoelcher, 97275 Schoelcher, Martinique, France; (J.S.-R.); (O.M.)
| | - Odile Marcelin
- Groupe BIOSPHERES, Campus de Schoelcher, 97275 Schoelcher, Martinique, France; (J.S.-R.); (O.M.)
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS-INPT-UPS, 31062 Toulouse, France;
| |
Collapse
|
6
|
Lee SB. Quality Characteristics and Antioxidant Activities of Six Types of Korean White Wine. Foods 2023; 12:3246. [PMID: 37685179 PMCID: PMC10486741 DOI: 10.3390/foods12173246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The cultivation of European grape cultivars suitable for winemaking in Korea presents challenges due to factors such as climate, soil conditions, precipitation, and sunlight. Consequently, Korea has traditionally resorted to adding sugar to its wine production to counteract the low sugar content in Korean grapes, yielding lower-quality wines. However, recent success in the cultivation of five European grape cultivars and the development of the domestic grape cultivar Cheongsoo have increased the possibility of achieving high-quality Korean wines. This study aimed to explore the potential of European grape cultivars and Cheongsoo as wine grapes in Korea. This study also conducted sensory evaluation and analyzed the physicochemical properties of the grapes and wines, including antioxidant capacity and color. Despite originating from the same vineyard, the composition of grapes and wines, including volatile aromatic compounds, significantly differed among the grape cultivars. In particular, Vidal wine exhibited superior antioxidant capacity compared with other wines. Moreover, Cheongsoo wine showed higher levels of essential volatile aromatic compounds, such as monoterpenes, than other wines. Sensory evaluation of these two wines also revealed excellent results. In conclusion, these findings hold promise for enhancing the diversity of Korean white wine and fostering growth in the wine industry.
Collapse
Affiliation(s)
- Sae-Byuk Lee
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehakro, Daegu 41566, Republic of Korea; ; Tel.: +82-53-950-7749
- Institute of Fermentation Biotechnology, Kyungpook National University, 80 Daehakro, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
Li J, Zhang Q, Sun B. Chinese Baijiu and Whisky: Research Reservoirs for Flavor and Functional Food. Foods 2023; 12:2841. [PMID: 37569110 PMCID: PMC10417287 DOI: 10.3390/foods12152841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Baijiu is a traditional spirit with high reputation in the Chinese community, and whisky, on the other hand, is a renowned spirit in Western culture, with both contributing a major proportion to the consumption and revenue in the global spirit market. Interestingly, starting with similar raw materials, such as grains, diverse production methods lead to different organoleptic profiles. In addition, such enormous attention they attract renders them as a crucial part in food and the related industry. Therefore, great efforts are made in improving product quality and optimizing production processes, such as flavor enhancement, facility development, and deep utilization of byproducts. Given the huge impacts and great involvements of these spirits in the general food industry, research focusing on either spirit is of referential significance for other relevant fields. With the aim of facilitating such collaboration, this review discusses the current research status, in a comparative manner, of both spirits in respect to key production processes-oriented sensory and flavor analysis, deep utilization of byproducts, and spirit-derived functional food investigations. Finally, the internal correlations based on the abovementioned criteria are identified, with research prospects proposed.
Collapse
Affiliation(s)
- Jinchen Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Qiuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
8
|
Verges VL, Gollihue JW, Joyce GE, DeBolt S. Lab-Scale Methodology for New-Make Bourbon Whiskey Production. Foods 2023; 12:foods12030457. [PMID: 36765986 PMCID: PMC9914533 DOI: 10.3390/foods12030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Whiskey production originated in Scotland in the 15th century and was based on malted barley. As Scotch-Irish settlers came into the Ohio river valley, they began fermenting and distilling the primary grain of North America, maize. These earlier settlers started a heritage; they created American Whiskey. The bourbon industry in Kentucky had tremendous growth in the last 20 years, and currently, distilleries have a broad increase in product innovation, new raw materials, improved sustainability, efficient processes, and product diversification. Our study presents a new lab-scale method for new-make bourbon whiskey production. It was developed to mimic distilleries' processes; therefore, results can be extrapolated and adopted by commercial distilleries. The method focused on reproducibility with consistency from batch to batch when handled by an operator or small crew in a university lab. The method consisted of a first cooking step to make a "mash", a fermentation phase of 96 h, a first distillation accomplished with a copper pot still to obtain the "low wines" and a second distillation carried out with an air still to collect the "hearts". The method produced a final distillate of 500-700 mL for further sensory analysis and tasting. This lab-scale method showed consistency between samples in the different parameters quantified and will be also used to train students in fermentation and distillation studies.
Collapse
Affiliation(s)
- Virginia L. Verges
- Department of Horticulture, University of Kentucky, Lexington, KY 40503, USA
| | - Jarrad W. Gollihue
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40503, USA
- James B. Beam Institute for Kentucky Spirits, University of Kentucky, Lexington, KY 40503, USA
| | - Glenna E. Joyce
- James B. Beam Institute for Kentucky Spirits, University of Kentucky, Lexington, KY 40503, USA
| | - Seth DeBolt
- Department of Horticulture, University of Kentucky, Lexington, KY 40503, USA
- James B. Beam Institute for Kentucky Spirits, University of Kentucky, Lexington, KY 40503, USA
- Correspondence: ; Tel.: +1-859-257-8654
| |
Collapse
|
9
|
Díaz AB, Durán-Guerrero E, Lasanta C, Castro R. From the Raw Materials to the Bottled Product: Influence of the Entire Production Process on the Organoleptic Profile of Industrial Beers. Foods 2022; 11:3215. [PMID: 37430968 PMCID: PMC9601789 DOI: 10.3390/foods11203215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
In the past few years, there has been a growing demand by consumers for more complex beers with distinctive organoleptic profiles. The yeast, raw material (barley or other cereals), hops, and water used add to the major processing stages involved in the brewing process, including malting, mashing, boiling, fermentation, and aging, to significantly determine the sensory profile of the final product. Recent literature on this subject has paid special attention to the impact attributable to the processing conditions and to the fermentation yeast strains used on the aromatic compounds that are found in consumer-ready beers. However, no review papers are available on the specific influence of each of the factors that may affect beer organoleptic characteristics. This review, therefore, focuses on the effect that raw material, as well as the rest of the processes other than alcoholic fermentation, have on the organoleptic profile of beers. Such effect may alter beer aromatic compounds, foaming head, taste, or mouthfeel, among other things. Moreover, the presence of spoilage microorganisms that might lead to consumers' rejection because of their impact on the beers' sensory properties has also been investigated.
Collapse
Affiliation(s)
- Ana Belén Díaz
- Chemical Engineering and Food Technology Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, 11510 Puerto Real, Cadiz, Spain
| | - Enrique Durán-Guerrero
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, 11510 Puerto Real, Cadiz, Spain
| | - Cristina Lasanta
- Chemical Engineering and Food Technology Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, 11510 Puerto Real, Cadiz, Spain
| | - Remedios Castro
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
10
|
DLLμE/GC-MS as a Powerful Analytical Approach to Establish the Volatilomic Composition of Different Whiskeys. BEVERAGES 2022. [DOI: 10.3390/beverages8030053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The volatilomic fingerprint of nine different whiskeys was established using a rapid and sensitive analytical approach based on dispersive liquid–liquid microextraction (DLLμE) followed by gas chromatography mass spectrometry detection (GC-MS) and gas chromatography with flame ionization detection (GC-FID). The influence of the extractor solvent on the extraction efficiency of volatile compounds (VOCs) was evaluated by DLLμE/GC-MS. The highest amounts of VOCs were obtained using 5 mL of sample, dichloromethane as the extractor solvent, and acetone as the disperser solvent. The proposed method showed no matrix effect, good linearity (R2 ≥ 0.993) in the assessed concentration range, recovery (ranging from 70 to 99%, precision (RSD ≤ 15%) and sensitivity (low limits of detection and quantification). A total of 37 VOCs belonging to different biosynthetic pathways including alcohols, esters, acids, carbonyl compounds, furanic compounds and volatile phenols were identified and quantified using DLLμE/GC-MS and DLLμE/GC-FID, respectively. Alcohols (3-methylbutan-1-ol, propan-1-ol), esters (ethyl decanoate, ethyl octanoate, ethyl hexanoate), and acids (decanoic acid, octanoic acid, hexanoic acid) were the most abundant chemical families. The multivariate statistical analysis allowed for the discrimination of whiskeys based on their volatilomic fingerprint, namely octanoic acid, 2-furfural, ethyl octanoate, ethyl hexanoate, acetic acid, ethyl dodecanoate, butan-1-ol, and ethyl decanoate.
Collapse
|
11
|
Ferracane A, Manousi N, Tranchida PQ, Zachariadis GA, Mondello L, Rosenberg E. Exploring the volatile profile of whiskey samples using solid-phase microextraction Arrow and comprehensive two-dimensional gas chromatography-mass spectrometry. J Chromatogr A 2022; 1676:463241. [PMID: 35763950 DOI: 10.1016/j.chroma.2022.463241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/28/2022]
Abstract
We present a novel sample preparation method for the extraction and preconcentration of volatile organic compounds from whiskey samples prior to their determination by comprehensive two-dimensional gas chromatography (GC × GC) coupled to mass spectrometry (MS). Sample preparation of the volatile compounds, important for the organoleptic characteristics of different whiskeys and their acceptance and liking by the consumers, is based on the use of the solid-phase microextraction (SPME) Arrow. After optimization, the proposed method was compared with conventional SPME regarding the analysis of different types of whiskey (i.e., Irish whiskey, single malt Scotch whiskey and blended Scotch whiskey) and was shown to exhibit an up to a factor of six higher sensitivity and better repeatability by a factor of up to five, depending on the compound class. A total of 167 volatile organic compounds, including terpenes, alcohols, esters, carboxylic acids, ketones, were tentatively-identified using the SPME Arrow technique, while a significantly lower number of compounds (126) were determined by means of conventional SPME. SPME Arrow combined with GC × GC-MS was demonstrated to be a powerful analytical tool for the exploration of the volatile profile of complex samples, allowing to identify differences in important flavour compounds for the three different types of whiskey investigated.
Collapse
Affiliation(s)
- Antonio Ferracane
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Institute of Chemical Technology and Analytics, Vienna University of Technology, Getreidemarkt 9/164, Vienna 1060, Austria
| | - Natalia Manousi
- Institute of Chemical Technology and Analytics, Vienna University of Technology, Getreidemarkt 9/164, Vienna 1060, Austria; Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Peter Q Tranchida
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - George A Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, Rome, Italy
| | - Erwin Rosenberg
- Institute of Chemical Technology and Analytics, Vienna University of Technology, Getreidemarkt 9/164, Vienna 1060, Austria.
| |
Collapse
|
12
|
Wanikawa A, Sugimoto T. A Narrative Review of Sulfur Compounds in Whisk(e)y. Molecules 2022; 27:molecules27051672. [PMID: 35268773 PMCID: PMC8911989 DOI: 10.3390/molecules27051672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
The production process of whisky consists of malting, mashing, fermentation, distillation and maturation. Sulfur volatile compounds generated during this process have long attracted interest because they influence quality in general. More than forty compounds have been reported: they are formed during malting, fermentation, and distillation, but some may decrease in concentration during distillation and maturation. In sensory analysis, sulfur characteristics are described as sulfury, meaty, cereal, feinty, and vegetable, among others. Their contribution to overall quality depends on their concentration, with a positive contribution at low levels, but a negative contribution at high levels. Chemical analyses of sulfur volatiles have been developed by using sulfur-selective detectors and multi-dimensional gas chromatography to overcome the numerous interferences from the matrix. Formation pathways, thresholds, and contribution have not been elucidated completely; therefore, methods for integrating diverse data and knowledge, as well as novel technical innovations, will be needed to control sulfur volatiles in the future.
Collapse
|
13
|
Basalekou M, Kyraleou M, Kallithraka S. Authentication of wine and other alcohol-based beverages—Future global scenario. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Experimental Whisky Fermentations: Influence of Wort Pretreatments. Foods 2021; 10:foods10112755. [PMID: 34829036 PMCID: PMC8624260 DOI: 10.3390/foods10112755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
In addition to ethanol yield, the production of flavour congeners during fermentation is a major consideration for Scotch whisky producers. Experimental whisky fermentations can provide useful information to the industry, and this is the focus of this paper. This study investigated the impact of wort pretreatments (boiled, autoclaved, filtered) on fermentation performance and flavour development in Scotch whisky distillates as an alternative to freezing wort for storage. Our study showed that no significant sensorial differences were detected in low wines (first distillates), while the chemical compositions showed clear changes in increased levels of esters and higher alcohols in boiled and autoclaved wort. In contrast, filtered wort comprised overall lower levels of congeners. Regarding alcohol yield, all three pretreatments resulted in decreased yields. In practice, the pretreatment of wort prior to fermentation requires additional process operations, while freezing requires large storage units. The pretreatments adopted in this study significantly influence the composition of the malt wort used for experimental whisky fermentations, and this results in a poorer fermentation performance compared with untreated wort. We recommend the use of fresh or frozen wort as the best options for small-scale fermentation trials.
Collapse
|