1
|
Hu J, Yu T, Huang K, Liang C, Li Y, Li X, Sun J, Bai W. Covalent Interactions of Anthocyanins with Proteins: Activity-Based Protein Profiling of Cyanidin-3- O-glucoside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39036896 DOI: 10.1021/acs.jafc.4c03869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Anthocyanins are common natural pigments with a variety of physiological activities. Traditional perspectives attribute their molecular mechanism to noncovalent interactions influencing signaling pathways. However, this ignores the nature of its benzopyrylium skeleton, which readily reacts with the electron-rich groups of proteins. Here, we modified cyanidin-3-O-glucoside (C3G) via activity-based protein profiling technology by our previous synthesis route and prepared the covalent binding probe (C3G-Probe) and the noncovalent photoaffinity probe (C3G-Diazirine). The properties of C3G's covalent binding to proteins were also discovered by comparing the labeling of the two probes to the whole HepG2 cell proteome. We further explored its target proteins and enriched pathways in HepG2 and HeLa cells. Western blot analysis further confirmed the covalent binding of C3G to four target proteins: insulin-degrading enzyme, metal cation symporter ZIP14, spermatid perinuclear RNA-binding protein, and Cystatin-B. Pathway analysis showed that covalent targets of C3G were concentrated in metabolic pathways and several ribonucleoprotein complexes that were also coenriched. The results of this study provide new insights into the interaction of the naturally active molecule C3G with proteins.
Collapse
Affiliation(s)
- Jun Hu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510632, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Tingxin Yu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Kuanchen Huang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Chujie Liang
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510632, China
| | - Yue Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510632, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Xue H, Zha M, Tang Y, Zhao J, Du X, Wang Y. Research Progress on the Extraction and Purification of Anthocyanins and Their Interactions with Proteins. Molecules 2024; 29:2815. [PMID: 38930881 PMCID: PMC11206947 DOI: 10.3390/molecules29122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Anthocyanins, as the most critical water-soluble pigments in nature, are widely present in roots, stems, leaves, flowers, fruits, and fruit peels. Many studies have indicated that anthocyanins exhibit various biological activities including antioxidant, anti-inflammatory, anti-tumor, hypoglycemic, vision protection, and anti-aging. Hence, anthocyanins are widely used in food, medicine, and cosmetics. The green and efficient extraction and purification of anthocyanins are an important prerequisite for their further development and utilization. However, the poor stability and low bioavailability of anthocyanins limit their application. Protein, one of the three essential nutrients for the human body, has good biocompatibility and biodegradability. Proteins are commonly used in food processing, but their functional properties need to be improved. Notably, anthocyanins can interact with proteins through covalent and non-covalent means during food processing, which can effectively improve the stability of anthocyanins and enhance their bioavailability. Moreover, the interactions between proteins and anthocyanins can also improve the functional characteristics and enhance the nutritional quality of proteins. Hence, this article systematically reviews the extraction and purification methods for anthocyanins. Moreover, this review also systematically summarizes the effect of the interactions between anthocyanins and proteins on the bioavailability of anthocyanins and their impact on protein properties. Furthermore, we also introduce the application of the interaction between anthocyanins and proteins. The findings can provide a theoretical reference for the application of anthocyanins and proteins in food deep processing.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; (H.X.); (M.Z.); (Y.T.); (J.Z.); (X.D.)
| |
Collapse
|
3
|
Nunes AN, Oliveira J, Bronze MR, Matias AA. Compressed fluid-based technology for downstream isolation of bluish anthocyanin-derived pigments obtained from blueberry surplus. Food Funct 2024; 15:6189-6198. [PMID: 38771590 DOI: 10.1039/d3fo04813f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
A dynamic compressed fluid-based separation process combining carbon dioxide and ethanol was explored to isolate portisins previously hemi-synthesized from blueberry surplus anthocyanins. The influence of process parameters such as pressure (100-500 bar), temperature (40-60 °C), and ethanol content in the compressed fluid mixture (20-50 wt%) on extraction yield, portisins yield, and portisins content in the extract was investigated. The two-step isolation process includes (1) a first step at 100 bar, 60 °C, and 20 wt% ethanol content in the compressed fluid mixture to remove the low polarity compounds; and (2) a second step at 500 bar, 40 °C, and 100 wt% ethanol to recover portisins, resulting in a 1.5-fold increase in portisins content. The performance of the two-step separation process was compared to centrifugal partitional chromatography and conventional reverse phase liquid chromatography already reported in terms of portisins content in the extract, process throughput, process efficiency, and total solvent used. The two-step separation process decreased the total solvent used, although with a decrease in the throughput and efficiency. Nevertheless, the choice of the best separation technology depends on the application, as these techniques result in different portisins purities. Overall, this study contributed to a scalable and more sustainable process for natural colorant production, specifically focusing on blue pigments, with several industrial applications.
Collapse
Affiliation(s)
- Ana N Nunes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157 Oeiras, Portugal
| | - Joana Oliveira
- REQUIMTE, Laboratório Associado para a Química Verde, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal
| | - Maria Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157 Oeiras, Portugal
- FFULisboa, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Ana A Matias
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
| |
Collapse
|
4
|
Zhang J, Li F, Shen S, Yang Z, Ji X, Wang X, Liao X, Zhang Y. More simple, efficient and accurate food research promoted by intermolecular interaction approaches: A review. Food Chem 2023; 416:135726. [PMID: 36893635 DOI: 10.1016/j.foodchem.2023.135726] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
The investigation of intermolecular interactions has become increasingly important in many studies, mainly by combining different analytical approaches to reveal the molecular mechanisms behind specific experimental phenomena. From spectroscopic analysis to sophisticated molecular simulation techniques like molecular docking, molecular dynamics (MD) simulation, and quantum chemical calculations (QCC), the mechanisms of intermolecular interactions are gradually being characterized more clearly and accurately, leading to revolutionary advances. This article aims to review the progression in the main techniques involving intermolecular interactions in food research and the corresponding experimental results. Finally, we discuss the significant impact that cutting-edge molecular simulation technologies may have on the future of conducting deeper exploration. Applications of molecular simulation technology may revolutionize the food research, making it possible to design new future foods with precise nutrition and desired properties.
Collapse
Affiliation(s)
- Jinghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Fangwei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Suxia Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Zhaotian Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Xingyu Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Xiao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China
| | - Yan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China; National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Science and Technology, Beijing 100083, People's Republic of China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, People's Republic of China.
| |
Collapse
|
5
|
Xue H, Cui P, Tan J, Zhang G, Ge S, Cai X. Separation of principal component dihydromyricetin from Ampelopsis grossedentata by high-speed counter-current chromatography and its interaction with corn starch. J Food Sci 2022; 87:2350-2363. [PMID: 35470872 DOI: 10.1111/1750-3841.16128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/08/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
Ampelopsis grossedentata (AG) is an industrial crop in the grape family, which has been used as a dual-purpose plant for medicine and tea with high medicinal values. However, little is reported on the separation technology of active components from AG and processing technology of AG products. High-speed counter-current chromatography (HSCCC) was applied to separate the principal component dihydromyricetin (DMY) from AG. DMY is added to starch-based products to improve food quality. The interaction between corn starch (CS) and DMY was investigated to predict and control the structure and function of starch-based foods. Results show that DMY with 97.13% purity was successfully obtained by HSCCC using a solvent system composed of light petroleum-ethyl acetate-methanol-water-trichloroacetic acid (1:3:1:3:0.01, v/v/v/v/v). Fourier-transform infrared spectroscopy (FT-IR) exhibits that the interactions between CS and DMY included hydrogen bond and noncovalent bond. X-ray diffraction (XRD) shows that DMY could increase the relative crystallinity of CS. Low-field nuclear magnetic resonance results (LF-NMR) imply that DMY decreased the spin relaxation time (T2 ) and inhibited the mobility of free water. Atomic force microscopy (AFM) results suggest that DMY changed the surface morphology of CS through hydrogen bond interaction. Moreover, the results of confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) indicate that DMY could enlarge the pores and change the microstructure of CS-DMY complexes. The findings promote the development of industrial CS-based products and utilization of corn crop.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, Lianchi District, Baoding, China
| | - Pengshan Cui
- School of Quality and Technical Supervision, Hebei University, Lianchi District, Baoding, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, Lianchi District, Baoding, China
| | - Guowei Zhang
- College of Traditional Chinese Medicine, Hebei University, Lianchi District, Baoding, China
| | - Shaoqin Ge
- College of Traditional Chinese Medicine, Hebei University, Lianchi District, Baoding, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Haidian District, Beijing, China
| |
Collapse
|
6
|
Tan J, Li P, Wang W, Cai X, Xue H. Separation of gallic acid from Cornus officinalis and its interactions with corn starch. Int J Biol Macromol 2022; 208:390-399. [PMID: 35339498 DOI: 10.1016/j.ijbiomac.2022.03.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 01/12/2023]
Abstract
D101 macroporous resin combined with high speed counter-current chromatography (D101 MR-HSCCC) was used to separate gallic acid (GA) from Cornus officinalis, and GA was added to starch-based products to improve food quality. The interaction and action mechanism of corn starch (CS) with GA were investigated for prediction and thereby controlling the structure and functions of starch-based foods. Results show that GA with 98.72% purity was successfully obtained using the D101 MR-HSCCC technique. HSCCC solvent system was composed of n-hexane-ethyl acetate-methanol-water (1:5:1:5, v/v/v/v). GA inhibited CS dissolution and improved CS swelling. Based on the particle size distribution, GA could enlarge the size of CS-GA complexes. FT-IR spectra exhibit that the interactions between CS and GA may comprise the intermolecular hydrogen bond and non-covalent bond. The results of XRD, LF-NMR and AFM show that the presence of GA could increase the relative crystallinity of CS, decrease the spin relaxation time (T2), and change the surface morphology of CS via the modification of hydrogen bonds distribution. Finally, SEM analysis indicates that GA could change the microstructure of CS-GA complexes. These findings facilitate the development of CS-based products and utilization of CS.
Collapse
Affiliation(s)
- Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Pengcheng Li
- College of Food Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China
| | - Wenli Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
7
|
Li P, Zhu X, Xiao M, Su Y, Yu S, Tang J, Xue H, Cai X. OUP accepted manuscript. J Chromatogr Sci 2022:6553929. [PMID: 35325046 DOI: 10.1093/chromsci/bmac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 11/14/2022]
Affiliation(s)
- Pengchegn Li
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Xiaohan Zhu
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Mi Xiao
- China Pharmaceutical Preparation Section, Huazhong University of Science and Technology Union Jiangbei Hospital/Wuhan Caidian People's Hospital, Wuhan 430100, P.R. China
| | - Yanqi Su
- China Pharmaceutical Preparation Section, Huazhong University of Science and Technology Union Jiangbei Hospital/Wuhan Caidian People's Hospital, Wuhan 430100, P.R. China
| | - Shanshan Yu
- Personnel Section, Wuhan University Zhongnan Hospital, Wuhan 430065, P.R. China
| | - Jintian Tang
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Hongkun Xue
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Xu Cai
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
8
|
Ultrasonic-Assisted Aqueous Two-Phase Extraction and Properties of Water-Soluble Polysaccharides from Malus hupehensis. Molecules 2021; 26:molecules26082213. [PMID: 33921423 PMCID: PMC8068786 DOI: 10.3390/molecules26082213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/02/2022] Open
Abstract
Malus hupehensis (M. hupehensis), an edible and medicinal plant with significant antioxidant and hypoglycemic activity, has been applied to new resource foods. However, the structural characterization and biological effects of its polysaccharides (MHP) are less known. The optimum extraction parameters to achieve the highest extraction efficiency (47.63%), the yield (1.68%) and purity of MHP (89.6%) by ultrasonic-assisted aqueous two-phase system (ATPS) were obtained under the liquid-to-solid ratio of 23 g/mL, ultrasonic power of 65 W, and ultrasonic time of 33 min. According to the analysis results, MHP was composed of Man, GlcA, Rha, GalA, Glc, Gal, Xyl, Ara, and Fuc, in which Ara and Gal were the main components, and the content of GlcA was the lowest. In in vitro activity analysis, MHP showed a significant antioxidant capacity, and an inhibition activity of α-glucosidase and the advanced glycation end products (AGEs) formation in the BSA/Glc reaction model. MHP interacted with α-glucosidase and changed the internal microenvironment of the enzyme, and inhibited the AGEs formation, which provides more evidence for the antihyperglycemic mechanism of MHP. The results suggest that ATPS is an efficient and environmentally friendly solvent system, and M. hupehensis has broad application prospects in functional foods, healthcare products, and pharmaceuticals.
Collapse
|