1
|
Tagliamonte S, Oliviero V, Vitaglione P. Food bioactive peptides: functionality beyond bitterness. Nutr Rev 2024:nuae008. [PMID: 38350613 DOI: 10.1093/nutrit/nuae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Bitter taste is an aversive taste because it is unconsciously associated with toxic compounds. However, a considerable variability in bitter sensitivity exists in those who have the genetic polymorphism for bitter taste receptors (TAS2Rs). Besides the oral cavity, TAS2Rs are present in many body tissues, including the gastrointestinal tract; therefore, they are crucial players both in the gustatory/hedonic system and in the homeostatic system, triggering numerous biological responses, including adipogenesis, carcinogenesis, or immunity. Bitter-tasting compounds are widely distributed in plant and animal foods and belong to many chemical classes. In this study, the evidence was reviewed on bitter peptides, considering the food sources, their formation in food under different processing and storage conditions and in the gastrointestinal tract during digestion, as well as their biological activities. Bitterness associated with peptides is due to the presence of hydrophobic amino acids in the C-terminus. The current literature mainly explores the enzymes and hydrolysis conditions, with the aim of reducing the formation of bitter peptides in hydrolysate preparation or food. Few studies highlight the bioactivity (namely, antihypertensive, antidiabetic, antioxidant, or immunity boosting), besides the bitterness. However, encapsulation of bitter peptides has been tentatively used to develop antihypertensive and antidiabetic supplements. In the era of personalized nutrition and precision medicine, the evidence available suggests the opportunity to use bitter bioactive peptides as functional ingredients in food. Such types of food may modulate a plethora of physiological mechanisms by targeting TAS2Rs in the gastrointestinal tract, thus modulating appetite sensations or gastrointestinal motility and discomfort according to individual nutritional needs and goals. More studies are needed to optimize the technological strategies to target TAS2Rs by bitter bioactive peptides, improve their stability in food, and validate the biological efficacy through well-designed in vivo studies.
Collapse
Affiliation(s)
- Silvia Tagliamonte
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Veronica Oliviero
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
2
|
Mirzapour-Kouhdasht A, McClements DJ, Taghizadeh MS, Niazi A, Garcia-Vaquero M. Strategies for oral delivery of bioactive peptides with focus on debittering and masking. NPJ Sci Food 2023; 7:22. [PMID: 37231034 DOI: 10.1038/s41538-023-00198-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Protein hydrolysis is a process used in the food industry to generate bioactive peptides of low molecular weight and with additional health benefits, such as antihypertensive, antidiabetic, and antioxidant properties that are often associated with their content on hydrophobic amino acids. This results in an increased bitterness of the products, making them less desirable for their use in food formulations. This review summarizes the main dietary sources of bitter bioactive peptides, including methods to determine their bitterness, such as the Q-values and electronic tongue; and the main factors and mechanisms underlying the bitterness of these compounds. The main strategies currently used to improve the taste and oral delivery of bioactive peptides are also discussed together with the main advantages and drawbacks of each technique. Debittering and masking techniques are reported in detail, including active carbon treatments, alcohol extraction, isoelectric precipitation, chromatographic methods, and additional hydrolytic processes. Other masking or blocking techniques, including the use of inhibitors, such as modified starch, taurine, glycine, and polyphosphates, as well as chemical modifications, such as amination, deamination, acetylation, or cross-linking were also discussed. The findings of this work highlight encapsulation as a highly effective method for masking the bitter taste and promoting the bioactivity of peptides compared to other traditional debittering and masking processes. In conclusion, the article suggests that advanced encapsulation technologies can serve as an effective means to mitigate the bitterness associated with bioactive peptides, while simultaneously preserving their biological activity, increasing their viability in the development of functional foods and pharmaceuticals.
Collapse
Affiliation(s)
| | | | | | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Dublin, 4, Ireland.
| |
Collapse
|
3
|
Liu B, Li N, Chen F, Zhang J, Sun X, Xu L, Fang F. Review on the release mechanism and debittering technology of bitter peptides from protein hydrolysates. Compr Rev Food Sci Food Saf 2022; 21:5153-5170. [PMID: 36287032 DOI: 10.1111/1541-4337.13050] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/14/2022] [Accepted: 09/04/2022] [Indexed: 01/28/2023]
Abstract
Recent scientific evidence indicates that protein hydrolysates contain bioactive peptides that have potential benefits for human health. However, the bitter-tasting hydrophobic peptides in protein hydrolysates negatively affect the sensory quality of resulting products and limit their utilization in food and pharmaceutical industries. The approaches to reduce, mask, and remove bitter taste from protein hydrolysates have been extensively reported. This review paper focuses on the advances in the knowledge regarding the structure-bitterness relationship of peptides, the release mechanism of bitter peptides, and the debittering methods for protein hydrolysates. Bitter tastes generating with enzymatic hydrolysis of protein is influenced by the type, concentration, and bitter taste threshold of bitterness peptides. A "bell-shaped curve" is used to describe the relationship between the bitterness intensity of the hydrolysates and the degree of hydrolysis. The bitter receptor perceives bitter potencies of bitter peptides by the hydrophobicity recognition zone. The intensity of bitterness is influenced by hydrophobic and electronic properties of amino acids and the critical spatial structure of peptides. Compared to physicochemical debittering (i.e., selective separation, masking of bitter taste, encapsulation, Maillard reaction, and encapsulation) and other biological debittering (i.e., enzymatic hydrolysis, enzymatic deamidation, plastein reaction), enzymatic hydrolysis is a promising debittering approach as it combines protein hydrolyzation and debittering into a one-step process, but more work should be done to advance the knowledge on debittering mechanism of enzymatic hydrolysis and screening of suitable proteases. Further study can focus on combining physicochemical and biological approaches to achieve high debittering efficiency and produce high-quality products.
Collapse
Affiliation(s)
- Boye Liu
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Nana Li
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Jingsi Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210014, People's Republic of China
| | - Xiaorui Sun
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Lei Xu
- Nestlé Product Technology Center, Nestlé Health Science, Bridgewater, NJ, 08807, USA
| | - Fang Fang
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
4
|
Carrera M. Proteomics and Food Analysis: Principles, Techniques, and Applications. Foods 2021; 10:foods10112538. [PMID: 34828819 PMCID: PMC8620185 DOI: 10.3390/foods10112538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Affiliation(s)
- Mónica Carrera
- Food Technology Department, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Pontevedra, Spain
| |
Collapse
|