1
|
Liu XY, Wang WZ, Yao SP, Li XY, Han RM, Zhang D, Zhao Z, Wang Y, Zhang JP. Antioxidation Activity Enhancement by Intramolecular Hydrogen Bond and Non-Browning Mechanism of Active Ingredients in Rosemary: Carnosic Acid and Carnosol. J Phys Chem B 2024. [PMID: 39073136 DOI: 10.1021/acs.jpcb.4c02949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Rosemary is one of the most promising, versatile, and studied natural preservatives. Carnosic acid (CA) and carnosol (CARN), as the primary active ingredients of rosemary extracts, have little difference in structure, but their antioxidant activities vary significantly, depending on the system studied. The underlying molecular mechanisms remain unclear. By means of optical spectroscopies, stopped-flow, laser photolysis, and density functional theory (DFT) calculations, we have compared CA and CARN between their reaction dynamics of radical scavenging, metal ion chelation, and oxidation inhibition in lipid emulsion and beef, as well as between their interactions with β-carotene (β-Car). For reference, 3-isopropyl catechol (IC), which is structurally similar to the active groups of CA and CARN, was studied in parallel. It is found for CA that the intramolecular hydrogen bond can boost the acidity of its phenol hydroxyl and that the synergistic effect with β-Car can substantially enhance its antioxidation activity in the model systems of lipid and meat via the CA-to-β-Car electron transfer reaction. The substitution of A and B rings on the catechol group in both CA and CARN limits browning caused by their formation of oxidative products as antioxidants.
Collapse
Affiliation(s)
- Xin-Yu Liu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Wen-Zhu Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Song-Po Yao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Xue-Ying Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Rui-Min Han
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Dangquan Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhijun Zhao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
2
|
Shi C, Liu M, Zhao H, Lv Z, Liang L, Zhang B. A Novel Insight into Screening for Antioxidant Peptides from Hazelnut Protein: Based on the Properties of Amino Acid Residues. Antioxidants (Basel) 2022; 11:antiox11010127. [PMID: 35052631 PMCID: PMC8772696 DOI: 10.3390/antiox11010127] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 12/13/2022] Open
Abstract
This study used the properties of amino acid residues to screen antioxidant peptides from hazelnut protein. It was confirmed that the type and position of amino acid residues, grand average of hydropathy, and molecular weight of a peptide could be comprehensively applied to obtain desirable antioxidants after analyzing the information of synthesized dipeptides and BIOPEP database. As a result, six peptides, FSEY, QIESW, SEGFEW, IDLGTTY, GEGFFEM, and NLNQCQRYM were identified from hazelnut protein hydrolysates with higher antioxidant capacity than reduced Glutathione (GSH) against linoleic acid oxidation. The peptides having Tyr residue at C-terminal were found to prohibit the oxidation of linoleic acid better than others. Among them, peptide FSEY inhibited the rancidity of hazelnut oil very well in an oil-in-water emulsion. Additionally, quantum chemical parameters proved Tyr-residue to act as the active site of FSEY are responsible for its antioxidation. This is the first presentation of a novel approach to excavating desired antioxidant peptides against lipid oxidation from hazelnut protein via the properties of amino acid residues.
Collapse
Affiliation(s)
- Chenshan Shi
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.S.); (M.L.); (H.Z.); (Z.L.)
| | - Miaomiao Liu
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.S.); (M.L.); (H.Z.); (Z.L.)
| | - Hongfei Zhao
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.S.); (M.L.); (H.Z.); (Z.L.)
| | - Zhaolin Lv
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.S.); (M.L.); (H.Z.); (Z.L.)
| | - Lisong Liang
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China
- National Innovation Alliance of Hazelnut Industry, Beijing 100091, China
- Correspondence: (L.L.); (B.Z.); Tel.: +86-010-6288-9634 (L.L.); +86-010-6233-8221 (B.Z.)
| | - Bolin Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.S.); (M.L.); (H.Z.); (Z.L.)
- Correspondence: (L.L.); (B.Z.); Tel.: +86-010-6288-9634 (L.L.); +86-010-6233-8221 (B.Z.)
| |
Collapse
|
3
|
Sun Y, Tang W, Pu C, Li R, Sun Q, Wang H. Improved stability of liposome-stabilized emulsions as coencapsulation delivery system for vitamin B2, vitamin E and β-carotene. Food Funct 2022; 13:2966-2984. [DOI: 10.1039/d1fo03617c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To realize the co-encapsulation of multiple nutraceuticals with different solubilities, Pickering emulsions stabilized by freshly-prepared liposome suspension stabilized emulsion (Fre-Lip-Sus-E) and hydrated lyophilized liposome stabilized emulsion (Hyd-Lyo-Lip-E) were prepared, in...
Collapse
|