1
|
El-Saadony MT, Saad AM, Korma SA, Salem HM, Abd El-Mageed TA, Alkafaas SS, Elsalahaty MI, Elkafas SS, Mosa WFA, Ahmed AE, Mathew BT, Albastaki NA, Alkuwaiti AA, El-Tarabily MK, AbuQamar SF, El-Tarabily KA, Ibrahim SA. Garlic bioactive substances and their therapeutic applications for improving human health: a comprehensive review. Front Immunol 2024; 15:1277074. [PMID: 38915405 PMCID: PMC11194342 DOI: 10.3389/fimmu.2024.1277074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
Garlic (Allium sativum L.) is a widely abundant spice, known for its aroma and pungent flavor. It contains several bioactive compounds and offers a wide range of health benefits to humans, including those pertaining to nutrition, physiology, and medicine. Therefore, garlic is considered as one of the most effective disease-preventive diets. Many in vitro and in vivo studies have reported the sulfur-containing compounds, allicin and ajoene, for their effective anticancer, anti-diabetic, anti-inflammatory, antioxidant, antimicrobial, immune-boosting, and cardioprotective properties. As a rich natural source of bioactive compounds, including polysaccharides, saponins, tannins, linalool, geraniol, phellandrene, β-phellandrene, ajoene, alliin, S-allyl-mercapto cysteine, and β-phellandrene, garlic has many therapeutic applications and may play a role in drug development against various human diseases. In the current review, garlic and its major bioactive components along with their biological function and mechanisms of action for their role in disease prevention and therapy are discussed.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed I. Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg, Russia
| | - Walid F. A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Betty T. Mathew
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Noor A. Albastaki
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Aysha A. Alkuwaiti
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Perth, WA, Australia
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, Food and Nutritional Science Program, North Carolina A&T State University, Greensboro, NC, United States
| |
Collapse
|
2
|
Lu H, Peng S, Xu N, Shang X, Liu J, Xu Z, Jiang N, Dong H, Wang R, Dong H. Exploring the Effects of Different Drying Methods on Related Differential Metabolites of Pleurotus citrinopileatus Singer Based on Untargeted Metabolomics. PLANTS (BASEL, SWITZERLAND) 2024; 13:1594. [PMID: 38931026 PMCID: PMC11207783 DOI: 10.3390/plants13121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Pleurotus citrinopileatus Singer (PCS) has attracted increasing attention as a raw material for medicine and food. Its quality is greatly affected by the accumulation of metabolites, which varies with the applied drying methods. In this study, we utilize an approach based on ultra-high-performance liquid chromatography/Q Exactive mass spectrometry (UHPLC-QE-MS) to reveal the metabolic profiles of PCS from three different drying methods (natural air-drying, NAD; hot-air-drying, HAD; vacuum freeze-drying, VFD). The results showed that lipids, amino acids and their derivatives were all important secondary metabolites produced during NAD, HAD and VFD treatments, with the key differential metabolites of PCS during drying including fifteen lipids and seven amino acids. Meanwhile, VFD was the best way for long-term preservation of dried PCS. Hot-drying methods, especially HAD, can improve the medicinal component of PCS. Furthermore, KEGG enrichment analysis highlighted 16 pathways and indicated that amino acid metabolism might be the key metabolite pathway for the PCS drying process. Our study elucidates the relationship between drying methods and metabolites or metabolic pathways of PCS to determine the mechanisms affecting the quality of PCS, and finally provides reference values for further development and application in functional food and medications.
Collapse
Affiliation(s)
- Huan Lu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.L.)
| | - Simin Peng
- Institute of Hunan Edible Fungi, Changsha 410013, China; (S.P.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Ning Xu
- Institute of Hunan Edible Fungi, Changsha 410013, China; (S.P.)
| | - Xiaodong Shang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.L.)
| | - Jianyu Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.L.)
| | - Zhen Xu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.L.)
| | - Ning Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.L.)
| | - Haoran Dong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.L.)
| | - Ruijuan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.L.)
| | - Hui Dong
- Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
3
|
Ozma MA, Abbasi A, Ahangarzadeh Rezaee M, Hosseini H, Hosseinzadeh N, Sabahi S, Noori SMA, Sepordeh S, Khodadadi E, Lahouty M, Kafil HS. A Critical Review on the Nutritional and Medicinal Profiles of Garlic’s ( Allium sativum L.) Bioactive Compounds. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mahdi Asghari Ozma
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Mohammad Ali Noori
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sama Sepordeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Material Science and Engineering, Department of Chemistry and Biochemistry, University of Arkansas—Fayetteville, Fayetteville, AR, USA
| | - Masoud Lahouty
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Contreras MDM, Gómez-Cruz I, Feriani A, Alwasel S, Harrath AH, Romero I, Castro E, Tlili N. Hepatopreventive properties of hydroxytyrosol and mannitol-rich extracts obtained from exhausted olive pomace using green extraction methods. Food Funct 2022; 13:11915-11928. [DOI: 10.1039/d2fo00888b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxytyrosol and mannitol rich extracts from exhausted olive pomace were obtained by green extraction methodologies. Supplementation of these extracts alleviated CCl4-induced hepatic damage and protected DNA.
Collapse
Affiliation(s)
- María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Irene Gómez-Cruz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Anouar Feriani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems. Faculty of Sciences of Gafsa, 2112 Gafsa, Tunisia
| | - Saleh Alwasel
- King Saud University, Department of Zoology, College of Science, Riyadh 11451, Saudi Arabia
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh 11451, Saudi Arabia
| | - Inmaculada Romero
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Nizar Tlili
- Institut Supérieur des Sciences et Technologies de l'Environnement, Université de Carthage, Tunisia
| |
Collapse
|
5
|
Protective Effects of Chlorogenic Acid against Carbon Tetrachloride-Induced Hepatotoxicity in Mice. Processes (Basel) 2021. [DOI: 10.3390/pr10010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The protective effects of chlorogenic acid (CGA) against liver injury were evaluated by its reduction in carbon tetrachloride (CCl4)-induced hepatic damage in ICR mice. The animals were orally given CGA (60, 100, and 200 mg/kg, respectively) or silymairn (200 mg/kg) daily with 0.3% CCl4 administration (3 mL/kg, dissolved in olive oil) after medicament treatment on the 7th day. Compared with the normal group, CCl4 caused severe impairment in liver according to the evidence of significant reduction in the level of total albumin and expansion (p < 0.05) of the activities in aspartate aminotransferase (AST) and alanine aminotransferase (ALT), cholesterol, triglyceride (TG), and total albumin in serum, decreased the level of glutathione (GSH), and diminished the activities of catalase, superoxide dismutase (SOD), glutathione reductase (GSH-Rd), and glutathione peroxidase (GSH-Px) in liver while increasing the level of hepatic thiobarbituric acid-reactive substances (TBARS). However, oral administration of CGA or silymarin could significantly (p < 0.05) decrease the serum levels of AST, ALT, cholesterol, TG, and total albumin and elevated the serum total albumin and the activities of GSH, catalase, SOD, GSH-Rd, and GSH-Px while leading to decline the TBARS in liver compared with CCl4-intoxicated group. Moreover, histopathology displayed that CGA decreased the formation of lesions in liver resulted from CCl4. The outcomes indicate that CGA shows the efficiency hepatoprotective consequences for CCl4-incited liver injuries in mice by the elevation of the activities of antioxidant enzymes and hindrance of lipid peroxidation.
Collapse
|