1
|
Seneviratne DM, Raphael B, Whiteside EJ, Windus LC, Kauter K, Dearnaley JD, Annamalai PK, Ward R, Song P, Burey P(P. A low-cost, antimicrobial aloe-alginate hydrogel film containing Australian First Nations remedy 'lemon myrtle oil' ( Backhousia citriodora) - Potential for incorporation into wound dressings. Heliyon 2024; 10:e37516. [PMID: 39315217 PMCID: PMC11417235 DOI: 10.1016/j.heliyon.2024.e37516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Chronic wounds pose a global public health challenge, particularly in remote settings where access to specialised wound care and dressings can be limited and cost-prohibitive. First Nations communities in Australia are at a significantly higher risk for developing chronic wounds and this risk further increases for people living in remote regions. There is an urgent need to develop inexpensive but effective wound dressings to improve wound outcomes. Over the past decade, sodium alginate (SA)-based hydrogel polymers have emerged as a cost-effective and biocompatible component in wound dressings, and many have been successfully commercialised. In this study, we have developed and evaluated various prototypes of SA-based hydrogels with the addition of another low-cost component, aloe vera (AV) to further tailor the physicochemical properties of the hydrogel. Since the presence of microbes is a major contributor to the pathophysiology of chronic wounds, we also evaluated the antimicrobial activity of lemon myrtle oil (LMO) (Backhousia citriodora) incorporated into the hydrogel, a remedy used traditionally by First Nations Australians. Novel formulations of AV-SA-LMO hydrogel prototypes in the absence and presence of lemon myrtle oil (at a concentration of 5 μg/mL) were assessed for their physicochemical and antimicrobial properties and compared to a commercially available hydrogel-based dressing. The addition of lemon myrtle oil imparted viscoelastic behaviour for improved processability of AV-SA-LMO hydrogel prototypes, while increasing protein adhesion, enhancing physical properties, and demonstrating antimicrobial activity against the common wound-infecting microbes Staphylococcus epidermidis and Candida albicans. Fourier transmission infrared (FTIR) spectra confirmed the molecular structures of the hydrogel prototypes as predicted. The prototypes also demonstrated biocompatibility with the HaCaT human keratinocyte cell line. This study has provided preliminary evidence that a 25:75 aloe vera:sodium alginate hydrogel with 5 μg/mL lemon myrtle oil has comparable physicochemical characteristics to a commercial hydrogel-based wound dressing and antimicrobial properties against S. epidermidis and C. albicans.
Collapse
Affiliation(s)
- Dinuki M. Seneviratne
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Health Research, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Future Materials, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Brooke Raphael
- School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Eliza J. Whiteside
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Health Research, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Future Materials, University of Southern Queensland, Toowoomba, Queensland, Australia
- Institute for Resilient Regions, University of Southern Queensland, Toowoomba, Australia
| | - Louisa C.E. Windus
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Future Materials, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Kate Kauter
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - John D.W. Dearnaley
- School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Pratheep K. Annamalai
- Centre for Future Materials, University of Southern Queensland, Toowoomba, Queensland, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Queensland, Australia
| | - Raelene Ward
- Centre for Health Research, University of Southern Queensland, Toowoomba, Queensland, Australia
- Institute for Resilient Regions, University of Southern Queensland, Toowoomba, Australia
- Kunja Traditional Owner, Cunnamulla, Queensland, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Toowoomba, Queensland, Australia
- School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Paulomi (Polly) Burey
- Centre for Future Materials, University of Southern Queensland, Toowoomba, Queensland, Australia
- School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, Australia
| |
Collapse
|
2
|
Ling Q, Zhang B, Wang Y, Xiao Z, Hou J, Liu Q, Zhang J, Xiao C, Jin Z, Liu Y. Identification of key genes controlling monoterpene biosynthesis of Citral-type Cinnamomum bodinieri Levl. Based on transcriptome and metabolite profiling. BMC Genomics 2024; 25:540. [PMID: 38822238 PMCID: PMC11141066 DOI: 10.1186/s12864-024-10419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/15/2024] [Indexed: 06/02/2024] Open
Abstract
The citral-type is the most common chemotype in Cinnamomum bodinieri Levl (C. bodinieri), which has been widely used in the daily necessities, cosmetics, biomedicine, and aromatic areas due to their high citral content. Despite of this economic prospect, the possible gene-regulatory roles of citral biosynthesis in the same geographic environment remains unknown. In this study, the essential oils (EOs) of three citral type (B1, B2, B3) and one non-citral type (B0) varieties of C. bodinieri were identified by GC-MS after hydrodistillation extraction in July. 43 components more than 0.10% were identified in the EOs, mainly composed of monoterpenes (75.8-91.84%), and high content citral (80.63-86.33%) were identified in citral-type. Combined transcriptome and metabolite profiling analysis, plant-pathogen interaction(ko04626), MAPK signaling pathway-plant(ko04016), starch and sucrose metabolism(ko00500), plant hormone signal transduction(ko04075), terpenoid backbone biosynthesis (ko00900) and monoterpenoid biosynthesis (ko00902) pathways were enriched significantly. The gene expression of differential genes were linked to the monoterpene content, and the geraniol synthase (CbGES), alcohol dehydrogenase (CbADH), geraniol 8-hydroxylase-like (CbCYP76B6-like) and 8-hydroxygeraniol dehydrogenase (Cb10HGO) were upregulated in the citral-type, indicating that they were associated with high content of geraniol and citral. The activities of CbGES and CbADH in citral type were higher than in non-citral type, which was corroborated by enzyme-linked immunosorbent assay (ELISA). This study on the accumulation mechanism of citral provides a theoretical basis for the development of essential oil of C. bodinieri.
Collapse
Affiliation(s)
- Qingyan Ling
- School of Soil and Water Conservation, Nanchang Institute of Technology, Jiangxi Provincial Engineering Research Center For Seed-Breeding and Utilization of Camphor Trees, Nanchang, China
- College of Forestry, Jiangxi Agricultural University, Jiangxi Key Laboratory of Subtropical Forest Resources Cultivation, Nanchang, China
| | - Beihong Zhang
- School of Soil and Water Conservation, Nanchang Institute of Technology, Jiangxi Provincial Engineering Research Center For Seed-Breeding and Utilization of Camphor Trees, Nanchang, China
| | - Yanbo Wang
- School of Soil and Water Conservation, Nanchang Institute of Technology, Jiangxi Provincial Engineering Research Center For Seed-Breeding and Utilization of Camphor Trees, Nanchang, China
| | - Zufei Xiao
- School of Soil and Water Conservation, Nanchang Institute of Technology, Jiangxi Provincial Engineering Research Center For Seed-Breeding and Utilization of Camphor Trees, Nanchang, China
| | - Jiexi Hou
- School of Soil and Water Conservation, Nanchang Institute of Technology, Jiangxi Provincial Engineering Research Center For Seed-Breeding and Utilization of Camphor Trees, Nanchang, China
| | - Qingqing Liu
- School of Soil and Water Conservation, Nanchang Institute of Technology, Jiangxi Provincial Engineering Research Center For Seed-Breeding and Utilization of Camphor Trees, Nanchang, China
| | - Jie Zhang
- School of Soil and Water Conservation, Nanchang Institute of Technology, Jiangxi Provincial Engineering Research Center For Seed-Breeding and Utilization of Camphor Trees, Nanchang, China
| | - Changlong Xiao
- School of Soil and Water Conservation, Nanchang Institute of Technology, Jiangxi Provincial Engineering Research Center For Seed-Breeding and Utilization of Camphor Trees, Nanchang, China
| | - Zhinong Jin
- School of Soil and Water Conservation, Nanchang Institute of Technology, Jiangxi Provincial Engineering Research Center For Seed-Breeding and Utilization of Camphor Trees, Nanchang, China.
| | - Yuanqiu Liu
- College of Forestry, Jiangxi Agricultural University, Jiangxi Key Laboratory of Subtropical Forest Resources Cultivation, Nanchang, China.
| |
Collapse
|
3
|
Kakleas K, Sinha S, Wilson D, Stiefel G. Lemon Myrtle (Backhousia citriodora): An Alternative and Effective Treatment for Molluscum Contagiosum in Children with Atopic Dermatitis. Chin J Integr Med 2023; 29:1018-1020. [PMID: 37695447 DOI: 10.1007/s11655-023-3747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Konstantinos Kakleas
- Paediatric Allergy Clinic, Agia Sofia Children's Hospital, Athens, 11527, Greece.
| | - Shilpee Sinha
- Paediatric Allergy Clinic, Leicester Royal Infirmary Hospital, Leicester, LE1 5WW, UK
| | - Deborah Wilson
- Paediatric Allergy Clinic, Leicester Royal Infirmary Hospital, Leicester, LE1 5WW, UK
| | - Gary Stiefel
- Paediatric Allergy Clinic, Leicester Royal Infirmary Hospital, Leicester, LE1 5WW, UK
| |
Collapse
|
4
|
Wang YF, Zheng Y, Cha YY, Feng Y, Dai SX, Zhao S, Chen H, Xu M. Essential oil of lemon myrtle (Backhousia citriodora) induces S-phase cell cycle arrest and apoptosis in HepG2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116493. [PMID: 37054823 DOI: 10.1016/j.jep.2023.116493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lemon myrtle (Backhousia citriodora F.Muell.) leaves, whether fresh or dried, are used traditionally in folk medicine to treat wounds, cancers, skin infections, and other infectious conditions. However, the targets and mechanisms related to anti-cancer effect of lemon myrtle are unavailable. In our study, we found that the essential oil of lemon myrtle (LMEO) showed anti-cancer activity in vitro, and we initially explored its mechanism of action. MATERIALS AND METHODS We analyzed the chemical compositions of LMEO by GC-MS. We tested the cytotoxicity of LMEO on various cancer cell lines using the MTT assay. Network pharmacology was used also to analyze the targets of LMEO. Moreover, the mechanisms of LMEO were investigated through scratch assay, flow cytometry analysis, and western blot in the HepG2 liver cancer cell line. RESULTS LMEO showed cytotoxicity on various cancer cell lines with values of IC50 40.90 ± 2.23 (liver cancer HepG2 cell line), 58.60 ± 6.76 (human neuroblastoma SH-SY5Y cell line), 68.91 ± 4.62 (human colon cancer HT-29 cell line) and 57.57 ± 7.61 μg/mL (human non-small cell lung cancer A549 cell line), respectively. The major cytotoxic chemical constituent in LMEO was identified as citrals, which accounted for 74.9% of the content. Network pharmacological analysis suggested that apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1), androgen receptor (AR), cyclin-dependent kinases 1 (CDK1), nuclear factor erythroid 2-related factor 2 (Nrf-2), fatty acid synthase (FASN), epithelial growth factor receptor (EGFR), estrogen receptor 1 (ERα) and cyclin-dependent kinases 4 (CDK4) are potential cytotoxic targets of LMEO. These targets are closely related to cell migration, cycle and apoptosis. Notley, the p53 protein had the highest confidence to co-associate with the eight common targets, which was further confirmed by scratch assay, flow cytometry analysis, and western blot in the HepG2 liver cancer cell line. LMEO significantly inhibited the migration of HepG2 cells in time-dependent and dose-dependent manner. Moreover, LMEO caused a S-phase blocking on HepG2 cells and promoted apoptosis in the meanwhile. Western blot results indicated that p53 protein, Cyclin A2 and Bax proteins were up-regulated, while Cyclin E1 and Bcl-2 proteins were down-regulated. CONCLUSION LMEO showed cytotoxicity in various cancer cell lines in vitro. Pharmacological networks showed LMEO to have multi-component and multi-targeting effects that are related to inhibit migration of HepG2 cells, and affect cell cycle S-phase arrest and apoptosis through modulation of p53 protein.
Collapse
Affiliation(s)
- Yun-Fen Wang
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Yang Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yin-Yue Cha
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Yang Feng
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Shao-Xing Dai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Sanjun Zhao
- School of Life Sciences, Yunnan Normal University, Chenggong, Kunming, 650500, China.
| | - Hao Chen
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China.
| | - Min Xu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China.
| |
Collapse
|
5
|
Hamzah MH, Ibrahim SK, Nor MZM, Hamzah AFA, Shamsudin R, Ali AHM. Optimization of electrochemical pre-treatment for essential oil extraction from lemon myrtle (B. citriodora) leaves by response surface methodology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Gandhi GR, Hillary VE, Antony PJ, Zhong LLD, Yogesh D, Krishnakumar NM, Ceasar SA, Gan RY. A systematic review on anti-diabetic plant essential oil compounds: Dietary sources, effects, molecular mechanisms, and safety. Crit Rev Food Sci Nutr 2023; 64:6526-6545. [PMID: 36708221 DOI: 10.1080/10408398.2023.2170320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a multifaceted metabolic syndrome defined through the dysfunction of pancreatic β-cells driven by a confluence of genetic and environmental elements. Insulin resistance, mediated by interleukins and other inflammatory elements, is one of the key factors contributing to the progression of T2DM. Many essential oils derived from dietary plants are beneficial against various chronic diseases. We reviewed the anti-diabetic properties of dietary plant-derived essential oil compounds, with a focus on their molecular mechanisms by modulating specific signaling pathways and other critical inflammatory mediators involved in insulin resistance. High-quality literature published in the last 12 years, from 2010 to 2022, was collected from the Scopus, Web of Science, PubMed, and Embase databases using the search terms "dietary plants," "essential oils," "anti-diabetic," "insulin resistance," "antihyperglycemic," "T2DM," "anti-diabetic essential oils," and anti-diabetic mechanism." According to the results, the essential oil compounds, including cinnamaldehyde, carvacrol, zingerone, sclareol, zerumbone, myrtenol, thujone, geraniol, citral, eugenol, thymoquinone, thymol, citronellol, α-terpineol, and linalool have been demonstrated to contain strong anti-diabetic effects via modulating various signal transduction pathways linked to glucose metabolism. Additionally, in diabetes-related animal models, they can also considerably reduce the expression of TNF-α, IL-1β, IL-4, IL-6, iNOS, and COX-2. The main signaling molecules regulated by these compounds include AMPK, GLUT4, Caspase-3, PPARγ, PPARα, NF-κB, p-IκBα, MyD88, MCP-1, SREBP-1c, AGEs, RAGE, VEGF, Nrf2/HO-1, and SIRT-1. They can also significantly inhibit the generation of TBARS and MDA, reduce oxidative stress, increase insulin levels, adiponectin, and glycoprotein enzymes, boost antioxidant enzymes like SOD, CAT, and GPx, as well as reduce glutathione and vital glycolytic enzymes. Besides, they can significantly lower the levels of liver enzymes and lipid profile markers. Moreover, most essential oil compounds are generally safe based on animal studies. In conclusion, dietary plant-derived essential oil compounds have potential anti-diabetic effects by influencing different signaling pathways and molecular targets linked to glucose metabolism, and should be safe and beneficial against diabetes and related complications.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, India
| | - Varghese Edwin Hillary
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, India
| | | | - Linda L D Zhong
- Biomedical Sciences and Chinese Medicine, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Devarajan Yogesh
- Department of Biochemistry, University of Madras, Chennai, India
| | | | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, India
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
7
|
Antimicrobial and antioxidant AIE chitosan-based films incorporating a Pickering emulsion of lemon myrtle (Backhousia citriodora) essential oil. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Hay T, Prakash S, Daygon VD, Fitzgerald M. Review of edible Australian flora for colour and flavour additives: Appraisal of suitability and ethicality for bushfoods as natural additives to facilitate new industry growth. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Ling Q, Zhang B, Wang Y, Xiao Z, Hou J, Xiao C, Liu Y, Jin Z. Chemical Composition and Antioxidant Activity of the Essential Oils of Citral-Rich Chemotype Cinnamomum camphora and Cinnamomum bodinieri. Molecules 2022; 27:7356. [PMID: 36364183 PMCID: PMC9656011 DOI: 10.3390/molecules27217356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 10/29/2023] Open
Abstract
Citral chemotypes Cinnamomum camphora (C. camphora) and Cinnamomum bodinieri (C. bodinieri) are promising industrial plants that contain abundant citral. For a more in-depth study, their significant biological effect, the chemical composition and antioxidant capacity of essential oils of citral-rich chemotype C. camphora and C. bodinieri (EOCC) were determined in the present study. The EOCC yield, obtained by hydro-distillation and analyzed by gas chromatography-mass spectrometry (GC-MS), ranged from 1.45-2.64%. Forty components more than 0.1% were identified and represented, mainly by a high content of neral (28.6-39.2%), geranial (31.8-54.1%), Z-isocitral (1.8-3.2%), E-isocitral (3.2-4.7%), geraniol (1.3-2.6%) and caryophyllene (0.6-2.4%). The antioxidant properties of EOCC were estimated by DPPH, ABTS and FRAP methods. As our results indicated, the antioxidant activity was significantly correlated to oxygenated monoterpenes. The variety of C. bodinieri (N7) presented the best antioxidant profile, given its highest inhibition of DPPH radical (IC50 = 6.887 ± 0.151 mg/mL) and ABTS radical scavenging activity (IC50 = 19.08 ± 0.02 mg/mL). To the best of our knowledge, more than 88% citral of C. bodinieri was investigated and the antioxidant properties described for the first time. Considering high essential oil yield, rich citral content and high antioxidant activity, the N7 variety will be a good candidate for pharmaceutical and cosmetic development of an improved variety.
Collapse
Affiliation(s)
- Qingyan Ling
- Key Laboratory of Silviculture, Co-Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Zhimin Rd. 1101, Nanchang 330045, China
- Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China
| | - Beihong Zhang
- Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China
| | - Yanbo Wang
- Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China
| | - Zufei Xiao
- Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China
| | - Jiexi Hou
- Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China
| | - Changlong Xiao
- Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China
| | - Yuanqiu Liu
- Key Laboratory of Silviculture, Co-Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Zhimin Rd. 1101, Nanchang 330045, China
| | - Zhinong Jin
- Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China
| |
Collapse
|
10
|
Lim AC, Tang SGH, Zin NM, Maisarah AM, Ariffin IA, Ker PJ, Mahlia TMI. Chemical Composition, Antioxidant, Antibacterial, and Antibiofilm Activities of Backhousia citriodora Essential Oil. Molecules 2022; 27:4895. [PMID: 35956846 PMCID: PMC9370046 DOI: 10.3390/molecules27154895] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
The essential oil of Backhousia citriodora, commonly known as lemon myrtle oil, possesses various beneficial properties due to its richness in bioactive compounds. This study aimed to characterize the chemical profile of the essential oil isolated from leaves of Backhousia citriodora (BCEO) and its biological properties, including antioxidant, antibacterial, and antibiofilm activities. Using gas chromatography-mass spectrometry, 21 compounds were identified in BCEO, representing 98.50% of the total oil content. The isomers of citral, geranial (52.13%), and neral (37.65%) were detected as the main constituents. The evaluation of DPPH radical scavenging activity and ferric reducing antioxidant power showed that BCEO exhibited strong antioxidant activity at IC50 of 42.57 μg/mL and EC50 of 20.03 μg/mL, respectively. The antibacterial activity results showed that BCEO exhibited stronger antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis) than against Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae). For the agar disk diffusion method, S. epidermidis was the most sensitive to BCEO with an inhibition zone diameter of 50.17 mm, followed by S. aureus (31.13 mm), E. coli (20.33 mm), and K. pneumoniae (12.67 mm). The results from the microdilution method showed that BCEO exhibited the highest activity against S. epidermidis and S. aureus, with the minimal inhibitory concentration (MIC) value of 6.25 μL/mL. BCEO acts as a potent antibiofilm agent with dual actions, inhibiting (85.10% to 96.44%) and eradicating (70.92% to 90.73%) of the biofilms formed by the four tested bacteria strains, compared with streptomycin (biofilm inhibition, 67.65% to 94.29% and biofilm eradication, 49.97% to 89.73%). This study highlights that BCEO can potentially be a natural antioxidant agent, antibacterial agent, and antibiofilm agent that could be applied in the pharmaceutical and food industries. To the best of the authors' knowledge, this is the first report, on the antibiofilm activity of BCEO against four common nosocomial pathogens.
Collapse
Affiliation(s)
- Ann Chie Lim
- School of Graduate Studies, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (A.C.L.); (A.M.M.)
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia;
| | - Shirley Gee Hoon Tang
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Noraziah Mohamad Zin
- Center of Diagnostics, Therapeutics & Investigations, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Abdul Mutalib Maisarah
- School of Graduate Studies, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (A.C.L.); (A.M.M.)
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia;
| | - Indang Ariati Ariffin
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia;
| | - Pin Jern Ker
- Institute of Sustainable Energy, Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia;
| | - Teuku Meurah Indra Mahlia
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia;
| |
Collapse
|
11
|
Southwell I, Núñez O. Editorial for the Special Issue, “Chemistry of Essential Oils and Food Flavours”. Foods 2022; 11:foods11152182. [PMID: 35892768 PMCID: PMC9330799 DOI: 10.3390/foods11152182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Essential oils have important functions in nature [...]
Collapse
Affiliation(s)
- Ian Southwell
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
- Correspondence:
| | - Oscar Núñez
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, University of Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain;
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, E-08921 Barcelona, Spain
| |
Collapse
|
12
|
Alderees F, Akter S, Mereddy R, Sultanbawa Y. Formulation, characterization, and stability of food grade oil‐in‐water nanoemulsions of essential oils of
Tasmannia lanceolata
,
Backhousia citriodora
and
Syzygium anisatum. J Food Saf 2022. [DOI: 10.1111/jfs.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fahad Alderees
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Indooroopilly QLD Australia
| | - Saleha Akter
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Indooroopilly QLD Australia
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Indooroopilly QLD Australia
| | - Ram Mereddy
- Department of Agriculture and Fisheries Queensland Government, Health and Food Sciences Precinct Coopers Plains Qld Australia
| | - Yasmina Sultanbawa
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Indooroopilly QLD Australia
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Indooroopilly QLD Australia
| |
Collapse
|
13
|
Review of the Leaf Essential Oils of the Genus Backhousia Sens. Lat. and a Report on the Leaf Essential Oils of B. gundarara and B. tetraptera. PLANTS 2022; 11:plants11091231. [PMID: 35567231 PMCID: PMC9103502 DOI: 10.3390/plants11091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022]
Abstract
A review of the leaf oils of the 13 species now recognised in the genus Backhousia is presented. This review carries on from, and incorporates data from, an earlier (1995) review of the then recognised eight species. The leaf oils of two new species of Backhousia, B. gundarara and B. tetraptera are reported for the first time. B. gundarara contains a mixture of mono- and sesquiterpenes, with α-pinene (14%) and spathulenol (11%) being the main members. In B. tetraptera, the principal component of the mainly terpenoid leaf oil is myrtenyl acetate (20–40%). The review also incorporates the two species of the genus Choricarpia, which have been subsumed into Backhousia, viz. B. leptopetala and B. subargentea. Due to its history in Backhousia, Syzygium anisatum, which has been transferred out of Backhousia, is included in the review for historical reasons.
Collapse
|
14
|
Petrisor G, Motelica L, Craciun LN, Oprea OC, Ficai D, Ficai A. Melissa officinalis: Composition, Pharmacological Effects and Derived Release Systems-A Review. Int J Mol Sci 2022; 23:3591. [PMID: 35408950 PMCID: PMC8998931 DOI: 10.3390/ijms23073591] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Melissa officinalis is a medicinal plant rich in biologically active compounds which is used worldwide for its therapeutic effects. Chemical studies on its composition have shown that it contains mainly flavonoids, terpenoids, phenolic acids, tannins, and essential oil. The main active constituents of Melissa officinalis are volatile compounds (geranial, neral, citronellal and geraniol), triterpenes (ursolic acid and oleanolic acid), phenolic acids (rosmarinic acid, caffeic acid and chlorogenic acid), and flavonoids (quercetin, rhamnocitrin, and luteolin). According to the biological studies, the essential oil and extracts of Melissa officinalis have active compounds that determine many pharmacological effects with potential medical uses. A new field of research has led to the development of controlled release systems with active substances from plants. Therefore, the essential oil or extract of Melissa officinalis has become a major target to be incorporated into various controlled release systems which allow a sustained delivery.
Collapse
Affiliation(s)
- Gabriela Petrisor
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.P.); (L.M.)
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ludmila Motelica
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.P.); (L.M.)
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Luminita Narcisa Craciun
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Ovidiu Cristian Oprea
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Denisa Ficai
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Anton Ficai
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.P.); (L.M.)
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
| |
Collapse
|
15
|
Wojtunik-Kulesza KA. Toxicity of Selected Monoterpenes and Essential Oils Rich in These Compounds. Molecules 2022; 27:molecules27051716. [PMID: 35268817 PMCID: PMC8912113 DOI: 10.3390/molecules27051716] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Monoterpenes make up the largest group of plant secondary metabolites. They can be found in numerous plants, among others, the Lamiaceae family. The compounds demonstrate antioxidative, antibacterial, sedative and anti-inflammatory activity, hence, they are often employed in medicine and pharmaceuticals. Additionally, their fragrant character is often made use of, notably in the food and cosmetic industries. Nevertheless, long-lasting studies have revealed their toxic properties. This fact has led to a detailed analysis of the compounds towards their side effects on the human organism. Although most are safe for human food and medical applications, there are monoterpene compounds that, in certain amounts or under particular circumstances (e.g., pregnancy), can cause serious disorders. The presented review characterises in vitro and in vivo, the toxic character of selected monoterpenes (α-terpinene, camphor, citral, limonene, pulegone, thujone), as well as that of their original plant sources and their essential oils. The selected monoterpenes reveal various toxic properties among which are embryotoxic, neurotoxic, allergenic and genotoxic. It is also known that the essential oils of popular plants can also reveal toxic characteristics that many people are unaware of.
Collapse
|