1
|
Kang HM, Park SY, Kim JE, Lee KW, Hwang DY, Choi YW. Citrullus mucosospermus Extract Reduces Weight Gain in Mice Fed a High-Fat Diet. Nutrients 2024; 16:2171. [PMID: 38999918 PMCID: PMC11243677 DOI: 10.3390/nu16132171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to investigate the therapeutic potential of Citrullus mucosospermus extract (CME) in counteracting adipogenesis and its associated metabolic disturbances in murine models. In vitro experiments utilizing 3T3-L1 preadipocytes revealed that CME potently inhibited adipocyte differentiation, as evidenced by a dose-dependent reduction in lipid droplet formation. Remarkably, CME also attenuated glucose uptake and intracellular triglyceride accumulation in fully differentiated adipocytes, suggesting its ability to modulate metabolic pathways in mature adipose cells. Translating these findings to an in vivo setting, we evaluated the effects of CME in C57BL/6N mice fed a high-fat diet (HFD) for 10 weeks. CME administration, concomitantly with the HFD, resulted in a significant attenuation of body weight gain compared to the HFD control group. Furthermore, CME treatment led to substantial reductions in liver weight, total fat mass, and deposits of visceral and retroperitoneal adipose tissue, underscoring its targeted impact on adipose expansion. Histological analyses revealed the remarkable effects of CME on hepatic steatosis. While the HFD group exhibited severe lipid accumulation within liver lobules, CME dose-dependently mitigated this pathology, with the highest dose virtually abolishing hepatic fat deposition. An examination of adipose tissue revealed a progressive reduction in adipocyte hypertrophy upon CME treatment, culminating in a near-normalization of adipocyte morphology at the highest dose. Notably, CME exhibited potent anti-inflammatory properties, significantly attenuating the upregulation of pro-inflammatory cytokines' mRNA levels (TNF-α, IL-1β and IL-6) in the livers of HFD-fed mice. This suggests a potential mechanism through which CME may exert protective effects against inflammation associated with obesity and fatty liver disease.
Collapse
Affiliation(s)
- He Mi Kang
- Department of Horticultural Bioscience/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Sun Young Park
- Institute of Nano-Bio Convergence, Pusan National University, Busan 46241, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ki Won Lee
- Natural Products Convergence R&D Division, Kwangdong Pharma. Co., Ltd., Seoul 08381, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Young-Whan Choi
- Department of Horticultural Bioscience/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
2
|
Park SY, Kim JE, Kang HM, Park KH, Je BI, Lee KW, Hwang DY, Choi YW. Citrullus mucosospermus Extract Exerts Protective Effects against Methionine- and Choline-Deficient Diet-Induced Nonalcoholic Steatohepatitis in Mice. Foods 2024; 13:2101. [PMID: 38998607 PMCID: PMC11240977 DOI: 10.3390/foods13132101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
In recent years, there has been increasing interest in exploring the potential therapeutic advantages of Citrullus mucosospermus extracts (CME) for nonalcoholic steatohepatitis (NASH). In this study, we investigated the therapeutic effects of CME on NASH using a mice model. High-performance liquid chromatography (HPLC) was employed to identify cucurbitacin E and cucurbitacin E-2-O-glucoside from the CME. Although CME did not significantly alter the serum lipid levels in methionine- and choline-deficient (MCD) mice, it demonstrated a protective effect against MCD diet-induced liver damage. CME reduced histological markers, reduced alanine transaminase (ALT) and aspartame transaminase (AST) levels, and modulated key NASH-related genes, including C/EBPα, PPARγ, Fas, and aP2. In addition, CME was found to restore hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) activity, both crucial for fat catabolism, and reduced the levels of pro-inflammatory cytokines. Furthermore, CME demonstrated the potential to mitigate oxidative stress by maintaining or enhancing the activation and expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and superoxide dismutase (SOD), both pivotal players in antioxidant defense mechanisms. These findings underscore the promising therapeutic potential of CME in ameliorating liver damage, inflammation, and oxidative stress associated with NASH.
Collapse
Affiliation(s)
- Sun Young Park
- Institute of Nano-Bio Convergence, Pusan National University, Busan 46241, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang 50463, Republic of Korea
| | - He Mi Kang
- Department of Horticultural Bioscience/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ki Ho Park
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang 50463, Republic of Korea
| | - Byoung Il Je
- Department of Horticultural Bioscience/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ki Won Lee
- Natural Products Convergence R&D Division, Kwangdong Pharm. Co., Ltd., Seoul 08381, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang 50463, Republic of Korea
| | - Young Whan Choi
- Department of Horticultural Bioscience/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
3
|
Olubi O, Obilana A, Tshilumbu N, Fester V, Jideani V. Physicochemical and Functional Properties of Citrullus mucosospermus, Citroides, and Moringa oleifera Seeds' Hydrocolloids. Foods 2024; 13:1131. [PMID: 38611435 PMCID: PMC11011541 DOI: 10.3390/foods13071131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Hydrocolloids form gel-like structures when dispersed in water and have garnered significant attention for their diverse applications in food, pharmaceuticals, and other industries. The extraction of hydrocolloids from natural sources, such as seeds, presents an intriguing avenue due to the potential diversity in composition and functionality. Utilising seeds from Citrullus lanatus mucosospermus, lanatus citroides, and Moringa aligns with the growing demand for natural and sustainable ingredients in various industries. This research investigated hydrocolloids extracted from Citrullus mucosospermus (CMS), lanatus citroides, and Moringa oleifera seeds, highlighting their versatile physicochemical and functional attributes. Hydrocolloids were extracted from the seeds and subjected to analysis of their proximate composition, particle size distribution, and interfacial tension using the hot water extraction method. Protein content variation was observed among the raw oilseed (CMS, Citroides, and Moringa oleifera) flours. The protein content of the hydrocolloids surpassed that of raw oilseeds, significantly enhancing the amino acid profile. Furthermore, the hydrocolloid ash contents ranged from 4.09% to 6.52% w/w dry weight, coupled with low fat levels. The particle size distribution revealed predominantly fine particles with a narrow size distribution. All three hydrocolloids demonstrated remarkable oil- and water-holding capacities, highlighting their suitability for efficient stabilisation and emulsification in food formulations. These findings suggest the potential utilisation of these hydrocolloids as valuable ingredients across a spectrum of applications, encompassing food, pharmaceuticals, and industry, thus contributing to the development of sustainable and functional products. The unique attributes presented herein mark a noteworthy advancement in the understanding and application of novel hydrocolloids from CMS, Citroides, and Moringa oleifera.
Collapse
Affiliation(s)
- Olakunbi Olubi
- Department of Food Science and Technology, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town 7535, South Africa; (O.O.); (A.O.)
| | - Anthony Obilana
- Department of Food Science and Technology, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town 7535, South Africa; (O.O.); (A.O.)
| | - Nsenda Tshilumbu
- Flow Process & Rheology Centre, Faculty of Engineering & the Built Environment, Cape Peninsula University of Technology, Cape Town 8000, South Africa; (N.T.); (V.F.)
| | - Veruscha Fester
- Flow Process & Rheology Centre, Faculty of Engineering & the Built Environment, Cape Peninsula University of Technology, Cape Town 8000, South Africa; (N.T.); (V.F.)
| | - Victoria Jideani
- Department of Food Science and Technology, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town 7535, South Africa; (O.O.); (A.O.)
| |
Collapse
|
4
|
Ren Y, Jia F, Li D. Ingredients, structure and reconstitution properties of instant powder foods and the potential for healthy product development: a comprehensive review. Food Funct 2024; 15:37-61. [PMID: 38059502 DOI: 10.1039/d3fo04216b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Instant foods are widely presented in powder forms across different food segments, which potentially can be formulated with functional or beneficial compounds to provide health benefits. Many reconstituted instant powder foods form colloidal suspensions with complex structures. However, designing instant powder food could be challenging due to the structural complexity and high flexibility in formulation. This review proposed a new classification method for instant powder foods according to the solubility of ingredients and the structure of the reconstituted products. Instant powder foods containing insoluble ingredients are discussed. It summarised challenges and current advances in powder treatments, reconstitution improvement, and influences on food texture and structure to facilitate product design in related industries. The characteristics and incorporation of the main ingredients and ingredients with health benefits in product development were reviewed. Different products vary significantly in the ratios of macronutrients. The macronutrients have limited solubility in water. After being reconstituted by water, the insoluble components are dispersed and swell to form colloidal dispersions with complex structures and textures. Soluble components, which dissolve in the continuous phase, may facilitate the dispersing process or influence the solution environment. The structure of reconstituted products and destabilising factors are discussed. Both particle and molecular structuring strategies have been developed to improve wettability and prevent the formation of lumps and, therefore, to improve reconstitution properties. Various types of instant food have been developed based on healthy or functional ingredients and exhibit positive effects on the prevention of non-communicable diseases and overall health. Less processed materials and by-products are often chosen to enhance the contents of dietary fibre and phenolic compounds. The enrichment of phenolic compounds, dietary fibres and/or probiotics tend to be simultaneous in plant-based products. The process of the ingredients and the formulation of products must be tailored to design the desired structure and to improve the reconstitution property.
Collapse
Affiliation(s)
- Yi Ren
- School of Public Health and Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China.
- Ningbo Yu Fang Tang Biological Science and Technology Co., Ltd, Ningbo 315012, China
| | - Fuhuai Jia
- Ningbo Yu Fang Tang Biological Science and Technology Co., Ltd, Ningbo 315012, China
| | - Duo Li
- School of Public Health and Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
5
|
Mousavi M, Fadaei V, Akbari‐adergani B. Stimulation of ACE inhibitory and improving α-amylase and α-glucosidase and antioxidant activities of semi-prepared and dry soup by incorporating with date kernel powder. Food Sci Nutr 2023; 11:1342-1353. [PMID: 36911836 PMCID: PMC10003009 DOI: 10.1002/fsn3.3170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/29/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Date kernel as a functional food component has a special importance due to its rich nutritional profile, low price, and ease of access. For this, in this research, the sub-product was used for formulation of semi-prepared dry soup (SPDS); the effect of adding 0 (S1 = control), 2 (S2), and 4 (S3) %w/w date kernel powder (DKP) on physicochemical, nutritional, and organoleptic properties and beneficial effects of SPDS samples were evaluated. The results revealed that S2 and S3 samples were different from the control sample in some physicochemical properties so that viscosity increased 1.27 and 1.52 times and a* raised 5.6 and 8.5 times, respectively, while L* decreased 0.94 and 0.88 times and b* reduced 0.92 and 0.8 times, respectively. The nutritional properties of S2 and S3 samples compared with the control sample improved. Also, differences were observed in the beneficial effects of S2 and S3 compared with the control sample as total polyphenol content (TPC) increased 1.06 and 1.11 times, respectively (p < .05); antioxidant activities (AA) of S2 and S3 samples were 8.04 and 6.01 mg/ml and angiotensin-converting enzyme (ACE) inhibitory activities were measured to be 8.2 and 7.86 mg/ml, respectively; also, α-amylase and α-glucosidase inhibitory activities of S2 and S3 samples were observed 4.48% and 5.70%, and 4.59% and 6.36%, respectively. From the organoleptic aspect, S3 had the highest acceptability. Generally, it is concluded that with the addition of DKP (maximally 4%w/w) to SPDS formulation, a functional soup could be produced considering the rich nutritional profile of DKP.
Collapse
Affiliation(s)
- Maryam Mousavi
- Department of Food Science and Technology, Shahr‐e‐Qods BranchIslamic Azad UniversityTehranIran
| | - Vajiheh Fadaei
- Department of Food Science and Technology, Shahr‐e‐Qods BranchIslamic Azad UniversityTehranIran
| | - Behrouz Akbari‐adergani
- Food and Drug Laboratory Research Center, Food and Drug AdministrationMinistry of Health and Medical EducationTehranIran
| |
Collapse
|