1
|
Palatzidi A, Nikoloudaki O, Torreiro MG, Matteucci C, Ferrentino G, Scampicchio MM, Di Cagno R, Gobbetti M. Novel formulations for developing fresh hybrid cheese analogues utilizing fungal-fermented brewery side-stream flours. Curr Res Food Sci 2024; 9:100829. [PMID: 39286429 PMCID: PMC11404057 DOI: 10.1016/j.crfs.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
This study investigated the development of hybrid cheese analogues (HCA) made with fermented brewery side-stream ingredients (spent yeast and malt rootlets) and dairy milk. Different percentages of side-stream flours (3.5%, 5%, and 7.5%) were mixed with pasteurized milk, and the developed HCA were evaluated for their biochemical and textural properties. The addition of a fermentation step improved nutrient availability and led to pH (range 4.79-5.60) and moisture content (range 45.86%-61.29%) similar to traditional animal-based fresh cheeses (control). The inclusion of side-stream flours led to coagulation, even without rennet addition. The higher the concentration of the flour used, the faster the coagulation time, suggesting synergistic effect between the enzymes of the rennet and the enzymes present in the fermented side-stream flours. Nevertheless, textural properties were inferior compared to the control. Selected HCA formulations with added 3.5% flour exhibited increased counts of enterococci and enterobacteria cell densities, ranging from 7.28 ± 0.03 to 7.72 ± 0.09 log CFU/g and 4.90 ± 0.16 to 5.41 ± 0.01 log CFU/g, respectively. Compared to the control sample, HCA formulations exhibited higher concentrations of organic acids, peptides, and free amino acids (FAAs). Lactic acid reached up to 23.78 ± 0.94 g/kg of dry matter (DM), while the peptide area reached up to 22918.50 ± 2370.93 mL⋅AU. Additionally, the total concentration of individual FAAs reached up to 2809.74 ± 104.85 mg/kg of DM, contrasted with the control, which resulted in lower concentrations (847.65 ± 0.02 mg/kg of DM). The overall findings suggested that despite challenges in microbiological quality and textural properties, HCA produced with the inclusion of up to 3.5% brewery side-stream flours could be a sustainable solution to produce nutritious dairy alternatives.
Collapse
Affiliation(s)
- Anastasia Palatzidi
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
| | - Olga Nikoloudaki
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
- International Competence Centre for Food Fermentations-ICOFF, Noitech Park, Via Ipazia 2, 39100, Bolzano, BZ, Italy
| | | | | | - Giovanna Ferrentino
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
| | - Matteo Mario Scampicchio
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
| | - Raffaella Di Cagno
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
- International Competence Centre for Food Fermentations-ICOFF, Noitech Park, Via Ipazia 2, 39100, Bolzano, BZ, Italy
| | - Marco Gobbetti
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
- International Competence Centre for Food Fermentations-ICOFF, Noitech Park, Via Ipazia 2, 39100, Bolzano, BZ, Italy
| |
Collapse
|
2
|
Emmanuel JK, Nganyira PD, Shao GN. Evaluating the potential applications of brewers' spent grain in biogas generation, food and biotechnology industry: A review. Heliyon 2022; 8:e11140. [PMCID: PMC9626929 DOI: 10.1016/j.heliyon.2022.e11140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/22/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Breweries, as the major users of fossil fuels, are constantly under economic and environmental pressure to minimize energy consumption and residual management costs. Biogas generation from brewing wastes is a realistic solution for significantly reducing fossil fuel use. Brewers' spent grain (BSG) forms about eighty per cent of the total wastes from a brewing plant. BSG has a high cellulose and non-cellulosic polysaccharides content which makes it potential for biogas production. This paper reviews the potential applications of BSG as an alternative substrate for production of biogas and the recent achievements which have been attained in anaerobic digestion (AD) technology. The usability of BSG in diverse technologies including production of animal and human food and as a medium for growing microorganisms and enzymes is reviewed. The chemical processes involved in producing biogas from BSG are discussed.
Collapse
|
3
|
Difonzo G, Grassi S, Paciulli M. Upcycling of Agro-Food Chain By-Products to Obtain High-Value-Added Foods. Foods 2022; 11:foods11142043. [PMID: 35885286 PMCID: PMC9319310 DOI: 10.3390/foods11142043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70121 Bari, Italy
- Correspondence:
| | - Silvia Grassi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Giovanni Celoria 2, 20133 Milan, Italy;
| | - Maria Paciulli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 47/A, 43124 Parma, Italy;
| |
Collapse
|
4
|
Zeko-Pivač A, Tišma M, Žnidaršič-Plazl P, Kulisic B, Sakellaris G, Hao J, Planinić M. The Potential of Brewer’s Spent Grain in the Circular Bioeconomy: State of the Art and Future Perspectives. Front Bioeng Biotechnol 2022; 10:870744. [PMID: 35782493 PMCID: PMC9247607 DOI: 10.3389/fbioe.2022.870744] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/17/2022] [Indexed: 12/30/2022] Open
Abstract
Brewer’s spent grain (BSG) accounts for approximately 85% of the total mass of solid by-products in the brewing industry and represents an important secondary raw material of future biorefineries. Currently, the main application of BSG is limited to the feed and food industry. There is a strong need to develop sustainable pretreatment and fractionation processes to obtain BSG hydrolysates that enable efficient biotransformation into biofuels, biomaterials, or biochemicals. This paper aims to provide a comprehensive insight into the availability of BSG, chemical properties, and current and potential applications juxtaposed with the existing and emerging markets of the pyramid of bio-based products in the context of sustainable and circular bioeconomy. An economic evaluation of BSG for the production of highly valuable products is presented in the context of sustainable and circular bioeconomy targeting the market of Central and Eastern European countries (BIOEAST region).
Collapse
Affiliation(s)
- Anđela Zeko-Pivač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marina Tišma
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- *Correspondence: Marina Tišma,
| | - Polona Žnidaršič-Plazl
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Jian Hao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Pudong, China
| | - Mirela Planinić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
5
|
Jin Z, Lan Y, Ohm JB, Gillespie J, Schwarz P, Chen B. Physicochemical composition, fermentable sugars, free amino acids, phenolics, and minerals in brewers' spent grains obtained from craft brewing operations. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Abstract
Brewers’ spent grains constitute a valuable byproduct of the beer industry. They are characterized by a rich nutritional composition consisting of around 70% lignocellulosic fibrous material, 20% proteins, 10% lipids, in addition to vitamins, minerals, amino acids, and phenolic compounds. These spent grains are produced in large amounts all through the year, are cheap, and lack economically feasible applications. Nowadays, 70% of these spent grains are used as animal feed, 10% are used for biogas production, and the remaining 20% are disposed in landfills. Due to the aforementioned facts, alternative uses of the brewers’ spent grains are highly sought-after. In fact, this nutrient-rich industrial by-product makes it a very good candidate for valorization through biotechnological processing, particularly microbial fermentation. After applying the needed pretreatments, using brewers’ spent grains as a substrate in submerged and solid-state fermentation of different microorganisms leads to the production of various value-added compounds such as organic acids, amino acids, volatile fatty acids, enzymes, vitamins, second-generation biofuels and other products.
Collapse
|
7
|
Dong H, Sousa LDC, Ubanwa B, Jones AD, Balan V. A New Method to Overcome Carboxyamide Formation During AFEX Pretreatment of Lignocellulosic Biomass. Front Chem 2022; 9:826625. [PMID: 35127657 PMCID: PMC8814328 DOI: 10.3389/fchem.2021.826625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022] Open
Abstract
Lignin-carbohydrate complexes (LCCs) in the plant cell wall are responsible for providing resistance against biomass-degrading enzymes produced by microorganisms. Four major types of lignin-carbohydrate bonds are reported in the literature, namely, benzyl ethers, benzyl esters, phenyl glycosides, and acetyl ester linkages. Ester’s linkages in the plant cell wall are labile to alkaline pretreatments, such as ammonia fiber expansion (AFEX), which uses liquid or gaseous ammonia to cleave those linkages in the plant cell wall and reduce biomass recalcitrance. Two competing reactions, notably hydrolysis and ammonolysis, take place during AFEX pretreatment process, producing different aliphatic and aromatic acids, as well as their amide counterparts. AFEX pretreated grasses and agricultural residues are known to increase conversion of biomass to sugars by four- to five-fold when subjected to commercial enzyme hydrolysis, yielding a sustainable feedstock for producing biofuels, biomaterials, and animal feed. Animal feed trials on dairy cows have demonstrated a 27% increase in milk production when compared to a control feedstock. However, the presence of carboxamides in feedstocks could promote neurotoxicity in animals if consumed beyond a certain concentration. Thus, there is the need to overcome regulatory hurdles associated with commercializing AFEX pretreated biomass as animal feed in the United States. This manuscript demonstrates a modified pretreatment for increasing the digestibility of industrial byproducts such as Brewer’s spent grains (BSG) and high-fiber meal (HFM) produced from BSG and dry distillers grains with soluble (DDGS), while avoiding the production of carboxamides. The three industrial byproducts were first treated with calculated amounts of alkali such as NaOH, Ca(OH)2, or KOH followed by AFEX pretreatment. We found that 4% alkali was able to de-esterify BSG and DDGS more efficiently than using 2% alkali at both 10 and 20% solids loading. AFEX pretreatment of de-esterified BSG, HFM, and DDGS produced twofold higher glucan conversion than respective untreated biomass. This new discovery can help overcome potential regulatory issues associated with the presence of carboxamides in ammonia-pretreated animal feeds and is expected to benefit several farmers around the world.
Collapse
Affiliation(s)
- Hui Dong
- Department of Chemical Engineering and Material Science, Michigan State University, Lansing, MI, United States
| | - Leonardo da Costa Sousa
- Department of Chemical Engineering and Material Science, Michigan State University, Lansing, MI, United States
| | - Bryan Ubanwa
- Department of Engineering Technology, College of Technology, University of Houston, Sugarland, TX, United States
| | - A. Daniel Jones
- Great Lakes Bioenergy Center, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Venkatesh Balan
- Department of Chemical Engineering and Material Science, Michigan State University, Lansing, MI, United States
- Department of Engineering Technology, College of Technology, University of Houston, Sugarland, TX, United States
- *Correspondence: Venkatesh Balan,
| |
Collapse
|