1
|
Tsokri S, Sarafidou M, Tsouko E, Athanasopoulou E, Vardaxi A, Pispas S, Tsironi T, Koutinas A. Efficient pectin recovery from sugar beet pulp as effective bio-based coating for Pacific white shrimp preservation. Int J Biol Macromol 2024; 282:136754. [PMID: 39437941 DOI: 10.1016/j.ijbiomac.2024.136754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
This study demonstrates the valorization of sugar beet pulp (SBP)-derived pectin to produce bio-based coatings for shrimp preservation. Pectin extraction was assessed at varying temperatures and extraction times to achieve tailored properties (high methoxyl-pectins, degree of esterification-DE >79.0 %) leading to 11.5 % extraction yield, 78.1 % galactouronic acid content and 80 % DE at optimal conditions (pH 1.5, 80 °C, 2 h). Pectin-based coatings supplemented with ascorbic acid (AA) (0.5-2.0 %) led to organoleptically acceptable shrimps with significantly lower total color differences during 28-days of storage, compared to uncoated and pectin-coated counterparts. AA-based coatings delayed shrimp melanosis, expressed as reduced polyphenoloxidase activity (48-86 %). Rich-in-holocellulose solids derived after pectin extraction were used for bacterial cellulose (BC) production, pinpointing the SBP potential as a multi-purpose feedstock. Fed-batch fermentation enhanced BC concentration (by 110 %) and productivity (1.6-fold higher) compared to batch-cultures. Pectin produced within a SBP-based biorefinery could be applied as bio-based coating with food packaging potential.
Collapse
Affiliation(s)
- Stamatia Tsokri
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera odos 75, 11855 Athens, Greece
| | - Mirva Sarafidou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera odos 75, 11855 Athens, Greece
| | - Erminta Tsouko
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece.
| | - Evmorfia Athanasopoulou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera odos 75, 11855 Athens, Greece
| | - Antiopi Vardaxi
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Theofania Tsironi
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera odos 75, 11855 Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera odos 75, 11855 Athens, Greece
| |
Collapse
|
2
|
Stanciu MC, Ionita D, Tȋmpu D, Popescu I, Suflet DM, Doroftei F, Tuchilus CG. Novel Quaternary Ammonium Derivatives Based on Apple Pectin. Polymers (Basel) 2024; 16:3352. [PMID: 39684100 DOI: 10.3390/polym16233352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
New quaternary ammonium derivatives (quats) based on apple pectin (PA) were synthesized by the chemical modification of native polysaccharides with various quaternization mixtures containing epichlorohydrin (ECH) and a tertiary amine. Pectin derivatives (QPAs) were studied by elemental analysis, conductometric titration, Fourier-transform infrared spectroscopy (FTIR), and 13C nuclear magnetic resonance (13C NMR). Viscosity measurements enabled the evaluation of the viscosity average molar mass (Mv) for the unmodified polysaccharide, as well as its intrinsic viscosity ([η]) value. Dynamic light scattering (DLS) analysis revealed that the PA and its quats formed aggregates in an aqueous solution with either a unimodal (PA) or bimodal (QPAs) distribution. Scanning transmission electron microscopy analysis (STEM) of the PA and its derivatives demonstrated the presence of individual polymeric chains and aggregates in aqueous solution, with the smallest sizes being specific to amphiphilic polymers. Thermal stability, as well as wide-angle X-ray diffraction (WAXD) studies, generally indicated a lower thermal stability and crystallinity of the QPAs compared with those of the PA. Antipathogenic activity demonstrated that the PA and its derivatives exhibited effectiveness against S. aureus ATCC 25923 bacterium and C. albicans ATCC 10231 pathogenic yeast.
Collapse
Affiliation(s)
| | - Daniela Ionita
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Daniel Tȋmpu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Irina Popescu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Dana Mihaela Suflet
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Cristina G Tuchilus
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania
| |
Collapse
|
3
|
Pu X, Yu S, Cui Y, Tong Z, Wang C, Wang L, Han J, Zhu H, Wang S. Stability of electrostatically stabilized emulsions and its encapsulation of astaxanthin against environmental stresses: Effect of sodium caseinate-sugar beet pectin addition order. Curr Res Food Sci 2024; 9:100821. [PMID: 39253722 PMCID: PMC11381615 DOI: 10.1016/j.crfs.2024.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Two addition orders, i.e., the layer-by-layer (L) and mixed biopolymer (M) orders, were used to generate sodium caseinate - sugar beet pectin electrostatically stabilized o/w emulsions with 0.5% oil and varying sodium caseinate: sugar beet pectin ratios (3:1-1:3) at pH 4.5. Emulsion stability against environmental stresses (i.e., pH, salt addition, thermal treatment, storage and in vitro simulated gastrointestinal digestion) and its astaxanthin encapsulation against degradation during storage and in vitro digestion were evaluated. Results indicated that a total biopolymer concentration of 0.5% was optimal, with the preferred sodium caseinate-sugar beet pectin ratios for L and M emulsions being 1:1 and 1:3, respectively. L emulsions generally exhibited smaller droplet diameters than M emulsions across all ratios, except at 1:3. Lowering the pH to 1.5 substantially reduced the net negative charge of all emulsions, with only L emulsions precipitating at pH 3. M emulsions showed greater tolerance to salt addition, remaining stable up to 500 mM sodium and calcium concentrations, whereas L emulsions destabilized at levels exceeding 50 mM and 30 mM, respectively. All emulsions were stable when heated at 37 °C or 90 °C for 30 min. Astaxanthin degradation rates increased with prolonged storage, reaching 61.66% and 54.08% by day 7 for L and M emulsions, respectively. Encapsulation efficiency of astaxanthin in freshly prepared M emulsions (86.85%) was significantly higher compared to L emulsions (72.82%). M emulsions had 30% and 25% higher encapsulation efficiency of astaxanthin than L emulsions after in vitro digestion for 120 min and 240 min respectively. This study offers suggestions for interface design and process optimization to improve the performance of protein-polysaccharide emulsion systems, such as in beverages and dairy products, as well as their delivery effect of bioactives.
Collapse
Affiliation(s)
- Xiaolu Pu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Shuaipeng Yu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Yue Cui
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Ziqian Tong
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Changyan Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Lin Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
- Junlebao Dairy Group, Shijiazhuang, Hebei 050221 China
| | - Junhua Han
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Hong Zhu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Shijie Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
- Junlebao Dairy Group, Shijiazhuang, Hebei 050221 China
| |
Collapse
|
4
|
Frosi I, Balduzzi A, Moretto G, Colombo R, Papetti A. Towards Valorization of Food-Waste-Derived Pectin: Recent Advances on Their Characterization and Application. Molecules 2023; 28:6390. [PMID: 37687219 PMCID: PMC10489144 DOI: 10.3390/molecules28176390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Pectin, a natural biopolymer, can be extracted from food waste biomass, adding value to raw materials. Currently, commercial pectin is mostly extracted from citrus peels (85.5%) and apple pomace (14.0%), with a small segment from sugar beet pulp (0.5%). However, driven by high market demand (expected to reach 2.12 billion by 2030), alternative agro-industrial waste is gaining attention as potential pectin sources. This review summarizes the recent advances in characterizing pectin from both conventional and emerging food waste sources. The focus is the chemical properties that affect their applications, such as the degree of esterification, the neutral sugars' composition, the molecular weight, the galacturonic acid content, and technological-functional properties. The review also highlights recent updates in nutraceutical and food applications, considering the potential use of pectin as an encapsulating agent for intestinal targeting, a sustainable biopolymer for food packaging, and a functional and emulsifying agent in low-calorie products. It is clear from the considered literature that further studies are needed concerning the complexity of the pectin structure extracted from emerging food waste raw materials, in order to elucidate their most suitable commercial application.
Collapse
Affiliation(s)
- Ilaria Frosi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.F.); (G.M.); (R.C.)
| | - Anna Balduzzi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.F.); (G.M.); (R.C.)
| | - Giulia Moretto
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.F.); (G.M.); (R.C.)
| | - Raffaella Colombo
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.F.); (G.M.); (R.C.)
| | - Adele Papetti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.F.); (G.M.); (R.C.)
- Center for Colloid and Surface Science (C.S.G.I.), University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
5
|
Lepilova O, Aleeva S, Koksharov S, Lepilova E. Supramolecular structure of banana peel pectin and its transformations during extraction by acidic methods. Int J Biol Macromol 2023; 242:124616. [PMID: 37146862 DOI: 10.1016/j.ijbiomac.2023.124616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/29/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
In this study, the approaches to describe the mesh structure in the homogalacturonate domains of pectin and the effect of the native structure violations on the stabilization effectiveness of the oil-in-water emulsion were demonstrated. Pectin with a native structure was isolated from banana peel by enzymolysis of insoluble dietary fibres. This pectin was compared with pectins, which were isolated using hydrochloric and citric acids. The properties of pectins were analyzed taking into account the ratio of galacturonate units in nonsubstituted, methoxylated and calcium-pectate forms. The content of calcium-pectate units determines the density of inter-molecular crosslinking formation. The simulation results reflect the structure of rigid "egg-box" crosslinking blocks and flexible segments formed in native pectin mainly by methoxylated links. Hydrochloric acid extraction is accompanied by the destruction of the crosslinking blocks and depolymerization of pectin. Citric acid partially demineralizes the crosslinking blocks contributing to the release of macromolecular chains that do not have calcium-pectate units. The granulometric data indicates that the individual macromolecules take the thermodynamically stable form of a statistical tangle. Such conformation is an ideal basis for the formation of "host-guest" microcontainers having a hydrophilic shell and a hydrophobic core with an oil-soluble functional substance.
Collapse
Affiliation(s)
- Olga Lepilova
- Laboratory of Chemistry and Technology of Modified Fibrous Materials, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademiceskaya 1, Ivanovo 153040, Russia.
| | - Svetlana Aleeva
- Laboratory of Chemistry and Technology of Modified Fibrous Materials, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademiceskaya 1, Ivanovo 153040, Russia
| | - Sergey Koksharov
- Laboratory of Chemistry and Technology of Modified Fibrous Materials, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademiceskaya 1, Ivanovo 153040, Russia
| | | |
Collapse
|
6
|
Eichhöfer H, Bindereif B, Karbstein HP, Bunzel M, van der Schaaf US, Wefers D. Influence of Arabinan Fine Structure, Galacturonan Backbone Length, and Degree of Esterification on the Emulsifying Properties of Acid-Extracted Sugar Beet Pectins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2105-2112. [PMID: 36668901 DOI: 10.1021/acs.jafc.2c07460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sugar beet pectins (SBPs) are known for their emulsifying properties, but it is yet unknown which structural elements are most important for functionality. Recent results indicated that the arabinose content has a decisive influence, but the approach applied did not allow causality to be established. In this study, a mostly intact SBP was selectively modified and the obtained pectins were analyzed for their molecular structure and their emulsifying properties. De-esterification only resulted in a moderate increase in droplet size. The length of the pectin backbone only influenced the emulsifying properties when the homogalacturonan backbone was cleaved to a higher extent. By using different arabinan-modifying enzymes, it was demonstrated that both higher portions and chain lengths of arabinans positively influence the emulsifying properties of SBPs. Therefore, we were able to refine the structure-function relationships for acid-extracted SBPs, which can be used to optimize extraction conditions.
Collapse
Affiliation(s)
- Hendrik Eichhöfer
- Institute of Applied Biosciences─Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Building 50.41, 76131 Karlsruhe, Germany
| | - Benjamin Bindereif
- Institute of Process Engineering in Life Sciences─Food Process Engineering, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, Building 50.31, 76131 Karlsruhe, Germany
| | - Heike Petra Karbstein
- Institute of Process Engineering in Life Sciences─Food Process Engineering, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, Building 50.31, 76131 Karlsruhe, Germany
| | - Mirko Bunzel
- Institute of Applied Biosciences─Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Building 50.41, 76131 Karlsruhe, Germany
| | - Ulrike Sabine van der Schaaf
- Institute of Process Engineering in Life Sciences─Food Process Engineering, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, Building 50.31, 76131 Karlsruhe, Germany
| | - Daniel Wefers
- Institute of Chemistry─Division of Food Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle/Saale, Germany
| |
Collapse
|
7
|
Šurlan J, Šereš Z, Dokić L, Krstonošić V, Maravić N. Evaluation of sugar beet pectin viscosity, surface activity, conductivity and zeta potential in sodium chloride aqueous solutions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
A novel pectic polysaccharide-based hydrogel derived from okra (Abelmoschus esculentusL. Moench) for chronic diabetic wound healing. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Can Enzymatic Treatment of Sugar Beet Pectins Reduce Coalescence Effects in High-Pressure Processes? COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
While sugar beet pectins (SBPs) are well known for effectively stabilizing fine oil droplets in low-fat food and beverages, e.g., low-fat dressings and soft drinks, it often fails in products of higher oil contents. The aim of this study was to improve the emulsifying properties of SBPs and, consequently, their ability to reduce coalescence during high pressure homogenization of products with increased oil content. Therefore, the molecular size of SBPs was reduced by partial cleavage of the homogalacturonan backbone using the enzymes exo- and endo-polygalacturonanase and varying incubation times. The sizes of SBPs were compared based on the molecular size distribution and hydrodynamic diameter. In addition, to obtain information on the interfacial activity and adsorption rate of SBPs, the dynamic interfacial tension was measured by drop profile analysis tensiometry. The (non)modified SBPs were used as emulsifying agents in 30 wt% mct oil–water emulsions stabilized with 0.5 wt% SBP at pH 3, prepared by high-pressure homogenization (400–1000 bar). By analyzing the droplet size distributions, conclusions could be drawn about the coalescence that occurred after droplet breakup. It could be shown that SBPs modified by exo-polygalacturonanase stabilized the oil–water interface more rapidly, resulting in less coalescence and the smallest oil droplets. In contrast, SBPs modified with endo-polygalacturonanase resulted in poorer emulsification properties, and thus larger oil droplets with increasing incubation time. The differences could be attributed to the different cleavage pattern of the enzymes used. The results suggest that a minimum molecular size is required for the stabilization of fine oil droplets with SBPs as emulsifiers.
Collapse
|
10
|
Bindereif B, Karbstein H, van der Schaaf U. Sugar beet pectins for the formulation of dressings and soft drinks: Understanding the complexity of charged hydrocolloids in industrial food emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Guo Q, Shan Z, Shao Y, Wang N, Qian K, Goff HD, Wang Q, Cui SW, Ding HH. Conformational Properties of Flaxseed Rhamnogalacturonan-I and Correlation between Primary Structure and Conformation. Polymers (Basel) 2022; 14:polym14132667. [PMID: 35808711 PMCID: PMC9269093 DOI: 10.3390/polym14132667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 01/30/2023] Open
Abstract
The pectic polysaccharides extracted from flaxseed (Linum usitatissiumum L.) mucilage and kernel were characterized as rhamnogalacturonan-I (RG-I). In this study, the conformational characteristics of RG-I fractions from flaxseed mucilage and kernel were investigated, using a Brookhaven multi-angle light scattering instrument (batch mode) and a high-performance size exclusion chromatography (HPSEC) system coupled with Viscotek tetra-detectors (flow mode). The Mw of flaxseed mucilage RG-I (FM-R) was 285 kDa, and the structure-sensitive parameter (ρ) value of FM-R was calculated as 1.3, suggesting that the FM-R molecule had a star-like conformation. The Mw of flaxseed kernel RG-I (FK-R) was 550 kDa, and the structure-sensitive parameter (ρ) values ranged from 0.90 to 1.21, suggesting a sphere to star-like conformation with relatively higher segment density. The correlation between the primary structure and conformation of RG-I was further discussed to better understand the structure–function relationship, which helps the scale-up applications of pectins in food, pharmaceutical, or cosmetic industries.
Collapse
Affiliation(s)
- Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.G.); (Z.S.); (Y.S.); (N.W.)
| | - Zhengxin Shan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.G.); (Z.S.); (Y.S.); (N.W.)
| | - Yanhui Shao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.G.); (Z.S.); (Y.S.); (N.W.)
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Q.G.); (Z.S.); (Y.S.); (N.W.)
| | - Keying Qian
- Department of Food Science, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada; (K.Q.); (H.D.G.); (S.W.C.)
| | - H. Douglas Goff
- Department of Food Science, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada; (K.Q.); (H.D.G.); (S.W.C.)
| | - Qi Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road W., Guelph, ON N1G 5C9, Canada;
| | - Steve W. Cui
- Department of Food Science, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada; (K.Q.); (H.D.G.); (S.W.C.)
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road W., Guelph, ON N1G 5C9, Canada;
| | - Huihuang H. Ding
- Department of Food Science, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada; (K.Q.); (H.D.G.); (S.W.C.)
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road W., Guelph, ON N1G 5C9, Canada;
- Correspondence:
| |
Collapse
|