1
|
Fu J, Wang Y, Qiao W, Di S, Huang Y, Zhao J, Jing M, Chen L. Research progress on factors affecting the human milk metabolome. Food Res Int 2024; 197:115236. [PMID: 39593319 DOI: 10.1016/j.foodres.2024.115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Human milk is the gold standard for infant nutrition and contains macronutrients, micronutrients, and various bioactive substances. The human milk composition and metabolite profiles are complex and dynamic, complicating its specific analysis. Metabolomics, a recently emerging technology, has been used to identify human milk metabolites classes. Applying metabolomics to study the factors affecting human milk metabolites can provide significant insights into the relationship between infant nutrition, health, and development and better meet the nutritional needs of infants during growth. Here, we systematically review the current status of human milk metabolomic research, and related methods, offering an in-depth analysis of the influencing factors and results of human milk metabolomics from a metabolic perspective to provide novel ideas to further advance human milk metabolomics.
Collapse
Affiliation(s)
- Jieyu Fu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yaling Wang
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Shujuan Di
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yibo Huang
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Mengna Jing
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
2
|
Moschino L, Verlato G, Stocchero M, Giordano G, Pirillo P, Meneghelli M, Guiducci S, Duci M, Fascetti Leon F, Baraldi E. Metabolomic analysis to predict the onset and severity of necrotizing enterocolitis. BMC Gastroenterol 2024; 24:380. [PMID: 39455932 PMCID: PMC11515140 DOI: 10.1186/s12876-024-03453-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is the most devastating gastrointestinal (GI) emergency in preterm neonates. Untargeted metabolomics may allow the identification of biomarkers involved in NEC pathophysiology. METHODS We conducted a prospective study including preterm infants born at < 34 gestational weeks (GWs) whose urine was longitudinally collected at birth (< 48 h, T0) and at 14 (T1) and 28 days (T2). Neonates were followed for their development of NEC, spontaneous intestinal perforation (SIP), or other GI conditions and compared to those of matched healthy controls. Urine samples were investigated by untargeted metabolomic analysis based on mass-spectrometry. RESULTS Thirty-five patients with NEC, 5 patients with SIP, 14 patients with other GI diseases and 113 controls were enrolled and selected for metabolomic analysis on the basis of their clinical characteristics and available samples. Considering urine samples at T0, the one-class classification approach was able to correctly classify 16/20 subjects (80%) who developed NEC, 3/3 (100%) who developed SIP and 5/7 subjects (71.4%) with other GI pathologies as not belonging to the control group. Neonates with surgical NEC had higher N-acetylaspartic acid, butyrylcarnitine and propionylcarnitine levels than did those with medical NEC. Considering the time evolution of the urinary metabolome, the NEC and control groups showed differences independently of the time point. CONCLUSIONS The urinary metabolome is closely associated with the underlying GI disease from birth. Urinary metabolic features characterize NEC patients from healthy controls until 28 days of life. The early urinary metabolome has the potential to predict surgical NEC. Future studies are needed to validate our results.
Collapse
Affiliation(s)
- Laura Moschino
- University of Padova, Department of Women's and Children's Health, Padova, Italy.
- University Hospital of Padova, Neonatal Intensive Care Unit, Padova, Italy.
- Institute of Pediatric Research, Città della Speranza, Padova, Italy.
| | - Giovanna Verlato
- University Hospital of Padova, Neonatal Intensive Care Unit, Padova, Italy
| | - Matteo Stocchero
- Institute of Pediatric Research, Città della Speranza, Padova, Italy
- Laboratory of Mass Spectrometry and Metabolomics, Institute of Pediatric Research, Padova University Hospital, Padova, Italy
| | - Giuseppe Giordano
- Institute of Pediatric Research, Città della Speranza, Padova, Italy
- Laboratory of Mass Spectrometry and Metabolomics, Institute of Pediatric Research, Padova University Hospital, Padova, Italy
| | - Paola Pirillo
- Institute of Pediatric Research, Città della Speranza, Padova, Italy
- Laboratory of Mass Spectrometry and Metabolomics, Institute of Pediatric Research, Padova University Hospital, Padova, Italy
| | - Marta Meneghelli
- University Hospital of Padova, Neonatal Intensive Care Unit, Padova, Italy
| | - Silvia Guiducci
- University Hospital of Padova, Neonatal Intensive Care Unit, Padova, Italy
| | - Miriam Duci
- Pediatric Surgery, Padova University Hospital, Padua, Italy
| | | | - Eugenio Baraldi
- University of Padova, Department of Women's and Children's Health, Padova, Italy
- University Hospital of Padova, Neonatal Intensive Care Unit, Padova, Italy
- Institute of Pediatric Research, Città della Speranza, Padova, Italy
| |
Collapse
|
3
|
Valerio E, Stocchero M, Pirillo P, D'Errico I, Bonadies L, Galderisi A, Giordano G, Baraldi E. Neurosteroid pathway derangement in asphyctic infants treated with hypothermia: an untargeted metabolomic approach. EBioMedicine 2023; 92:104636. [PMID: 37257315 PMCID: PMC10244906 DOI: 10.1016/j.ebiom.2023.104636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/29/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND The pathobiological mechanisms associated with perinatal asphyxia and hypoxic-ischemic encephalopathy are complex and poorly understood. The metabolic effects of therapeutic hypothermia have been partially explored. METHODS We conducted a single-center longitudinal study to investigate the metabolic effects of perinatal asphyxia and hypoxic-ischemic encephalopathy on the urinary metabolome of a group of 12 asphyctic infants over time compared to 22 matched healthy newborns, using untargeted metabolomics based on mass spectrometry. FINDINGS Over-representation pathway analysis identified the steroidogenesis pathway as being significantly disrupted, with reduced steroid levels in the first three days of life despite treatment with hypothermia. Comparison with matched healthy newborns showed that the urinary steroid content was lower in asphyctic infants before hypothermia. The lysine degradation and carnitine synthesis pathways were also significantly affected. INTERPRETATION Steroidogenesis is significantly disrupted in asphyctic infants compared to healthy newborns. Given how neurosteroids are involved in neuromodulation and neuroprotection, translational research is warranted on the potential role of neurosteroid-based intervention in asphyctic infants. FUNDING None.
Collapse
Affiliation(s)
- Enrico Valerio
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, Azienda Ospedale-Università di Padova, Italy; Institute of Pediatric Research "Città Della Speranza", Padova, Italy
| | - Matteo Stocchero
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, Azienda Ospedale-Università di Padova, Italy; Institute of Pediatric Research "Città Della Speranza", Padova, Italy
| | - Paola Pirillo
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, Azienda Ospedale-Università di Padova, Italy; Institute of Pediatric Research "Città Della Speranza", Padova, Italy
| | - Ignazio D'Errico
- Department of Neuroradiology, Azienda Ospedale-Università di Padova, Italy
| | - Luca Bonadies
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, Azienda Ospedale-Università di Padova, Italy; Institute of Pediatric Research "Città Della Speranza", Padova, Italy
| | - Alfonso Galderisi
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, Azienda Ospedale-Università di Padova, Italy; Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Giuseppe Giordano
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, Azienda Ospedale-Università di Padova, Italy; Institute of Pediatric Research "Città Della Speranza", Padova, Italy
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, Azienda Ospedale-Università di Padova, Italy; Institute of Pediatric Research "Città Della Speranza", Padova, Italy.
| |
Collapse
|
4
|
Nutritional Parameters in Colostrum of Different Mammalian Species. BEVERAGES 2022. [DOI: 10.3390/beverages8030054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Colostrum (or first milk) is the food produced by all the mothers in all specific mammalian species, ruminants, monogastric and marine mammalians for their newborns during the first 24–48 h post-partum. Colostrum provides to the neonate all essential nutrients necessary for the first week of life, but the effect of colostrum shows a long-term effect not limited to these first days. Colostrum is considered to be a safe and essential food for human consumption. Some young children can show at the beginning of their colostrum-based diet some side effects, such as nausea and flatulence, but they disappear quickly. In human colostrum, the immunoglobulins and lactoferrin determined show the ability to create natural immunity in newborns, reducing greatly the mortality rate in children. Recent studies suggest that bovine colostrum (BC) may be an interesting nutraceutical food, due to its ability in preventing and/or mitigating several diseases in newborns and adults. This review aims to show the nutraceutical and functional properties of colostrum produced by several mammalian species, describing the different colostrum bio-active molecules and reporting the clinical trials aimed to determine colostrum nutraceutical and therapeutic characteristics in human nutrition.
Collapse
|
5
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|