1
|
Lu Y, Qin L, Mao Y, Lnong X, Wei Q, Su J, Chen S, Wei Z, Wang L, Liao X, Zhao L. Antibacterial activity of a polysaccharide isolated from litchi (Litchi chinensis Sonn.) pericarp against Staphylococcus aureus and the mechanism investigation. Int J Biol Macromol 2024; 279:134788. [PMID: 39173786 DOI: 10.1016/j.ijbiomac.2024.134788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The long-term use of antibiotics can cause drug resistance. Natural polysaccharides are a novel means of treating bacterial infections, and the development and utilization of litchi pericarp polysaccharide (LPPs) as a bacteriostatic active substance offer a new research direction for the high-value utilization of litchi by-products. This study revealed that LPPs inhibited Staphylococcus aureus more than Escherichia coli, Listeria monocytogenes, and Salmonella typhimurium, with the minimum inhibitory concentrations of 145, 205, 325, and 445 μg/mL, respectively. The inhibitory activity of LPPs was insignificant for Bacillus subtilis at 505 μg/mL. The assessment of antibacterial mechanisms revealed that LPPs influenced the growth, conductivity, protein, and nucleic acid, reducing sugar, respiratory chain dehydrogenase activity, bacterial lipid peroxidation, intracellular adenosine triphosphate, and extracellular alkaline phosphatase levels of S. aureus. Of note, LPPs could modify the cell wall integrity and cell membrane permeability of S. aureus, resulting in the leakage of intracellular large and small molecules, inhibition of cellular respiratory metabolism, and oxidative losses. These processes exhibited an inhibitory effect and made the bacterium nonfunctional, thereby affecting its growth and metabolism or causing cell death. These findings provide support and insights into the potential application of LPPs as a natural antimicrobial agent.
Collapse
Affiliation(s)
- Yucui Lu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China
| | - Linyin Qin
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yuanhui Mao
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xianmei Lnong
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qianni Wei
- Beihai Vocational College, Beihai 536000, China
| | - Junwen Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Shuwen Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhongshi Wei
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Lijing Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiayun Liao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China.
| | - Lichun Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China.
| |
Collapse
|
2
|
Xu Y, Song Y, Ning Y, Li S, Qu Y, Jiao B, Lu X. Macrolactin XY, a Macrolactin Antibiotic from Marine-Derived Bacillus subtilis sp. 18. Mar Drugs 2024; 22:331. [PMID: 39195447 PMCID: PMC11355411 DOI: 10.3390/md22080331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Two new compounds, macrolactin XY (1) and (5R, 9S, 10S)-5-(hydroxymethyl)-1,3,7-decatriene-9,10-diol (2), together with nine known compounds (3-11) were isolated from the marine Bacillus subtilis sp. 18 by the OSMAC strategy. These compounds were evaluated for antibacterial activity against six tested microorganisms. Compounds 1-5 and 7-10 showed varied antibacterial activity, with the minimum inhibitory concentration (MIC) ranging from 3 to 12 μg/mL. Macrolactin XY (1) was found to possess superior antibacterial activity, especially exhibiting significant effectiveness against Enterococcus faecalis. The antibacterial activity mechanism against E. faecalis was investigated. The mechanism may disrupt bacterial cell membrane integrity and permeability, and also inhibit the expression of genes associated with bacterial energy metabolism, as established by the experiments concerning cell membrane potential, SDS-PAGE electrophoresis, cell membrane integrity, and key gene expressions. This study offers valuable insights and serves as a theoretical foundation for the future development of macrolactins as antibacterial precursors.
Collapse
Affiliation(s)
| | | | | | | | | | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (Y.X.); (Y.S.); (Y.N.); (S.L.); (Y.Q.)
| | - Xiaoling Lu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (Y.X.); (Y.S.); (Y.N.); (S.L.); (Y.Q.)
| |
Collapse
|
3
|
Wang Y, Rui W, Li Y, Han Y, Zhan X, Cheng S, Song L, Yang H, Jiang T, Liu G, Shi C. Inhibition and Mechanism of Citral on Bacillus cereus Vegetative Cells, Spores, and Biofilms. Foodborne Pathog Dis 2024; 21:447-457. [PMID: 38985570 DOI: 10.1089/fpd.2023.0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Bacillus cereus causes food poisoning by producing toxins that cause diarrhea and vomiting and, in severe cases, endocarditis, meningitis, and other diseases. It also tends to form biofilms and spores that lead to contamination of the food production environment. Citral is a potent natural antibacterial agent, but its antibacterial activity against B. cereus has not been extensively studied. In this study, we first determined the minimum inhibitory concentrations and minimum bactericidal concentrations, growth curves, killing effect in different media, membrane potential, intracellular adenosine triphosphate (ATP), reactive oxygen species levels, and morphology of vegetative cells, followed by germination rate, morphology, germination state of spores, and finally biofilm clearance effect. The results showed that the minimum inhibitory concentrations and minimum bactericidal concentrations of citral against bacteria ranged from 100 to 800 μg/mL. The lag phase of bacteria was effectively prolonged by citral, and the growth rate of bacteria was slowed down. Bacteria in Luria-Bertani broth were reduced to below the detection limit by citral at 800 μg/mL within 0.5 h. Bacteria in rice were reduced to 3 log CFU/g by citral at 4000 μg/mL within 0.5 h. After treatment with citral, intracellular ATP concentration was reduced, membrane potential was altered, intracellular reactive oxygen species concentration was increased, and normal cell morphology was altered. After treatment with citral at 400 μg/mL, spore germination rate was reduced to 16.71%, spore morphology was affected, and spore germination state was altered. It also had a good effect on biofilm removal. The present study showed that citral had good bacteriostatic activity against B. cereus vegetative cells and its spores and also had a good clearance effect on its biofilm. Citral has the potential to be used as a bacteriostatic substance for the control of B. cereus in food industry production.
Collapse
Affiliation(s)
- Yihong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wushuang Rui
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yilin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yan Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tongyu Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Guorong Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Wang J, Xu L, Gu L, Lv Y, Li J, Yang Y, Meng X. Cell-Free Supernatant of Lactiplantibacillus plantarum 90: A Clean Label Strategy to Improve the Shelf Life of Ground Beef Gel and Its Bacteriostatic Mechanism. Foods 2023; 12:4053. [PMID: 38002111 PMCID: PMC10670453 DOI: 10.3390/foods12224053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Lactic acid bacteria metabolites can be used as a clean-label strategy for meat products due to their "natural" and antibacterial properties. In this study, the feasibility of using cell-free supernatant of Lactiplantibacillus plantarum 90 (LCFS) as a natural antibacterial agent in ground beef was investigated. The sensitivity of LCFS to pH, heat and protease, as well as the changes of enzyme activities of alkaline phosphatase (AKP) and Na+/K+-ATP together with the morphology of indicator bacteria after LCFS treatment, were analyzed to further explore the antibacterial mechanism of LCFS. The results showed that the addition of 0.5% LCFS inhibited the growth of microorganisms in the ground beef gel and extended its shelf-life without affecting the pH, cooking loss, color and texture characteristics of the product. In addition, the antibacterial effect of LCFS was the result of the interaction of organic acids and protein antibacterial substances in destroying cell structures (cell membrane, etc.) to achieve the purpose of bacteriostasis. This study provides a theoretical basis for the application of LCFS in meat products and a new clean-label strategy for the food industry.
Collapse
Affiliation(s)
- Jing Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China;
| | - Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Luping Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.L.); (J.L.)
| | - Yuanqi Lv
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.L.); (J.L.)
| | - Junhua Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.L.); (J.L.)
| | - Yanjun Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.L.); (J.L.)
| | - Xiangren Meng
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China;
- Chinese Cuisine Promotion and Research Base, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
5
|
Yang X, Zhao D, Ge S, Bian P, Xue H, Lang Y. Alginate-based edible coating with oregano essential oil/β-cyclodextrin inclusion complex for chicken breast preservation. Int J Biol Macromol 2023; 251:126126. [PMID: 37541460 DOI: 10.1016/j.ijbiomac.2023.126126] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 07/13/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
A sodium alginate (SA) edible coating containing oregano essential oil (OEO)/β-cyclodextrin (β-CD) inclusion complexes (SA/OEO-MP coating) was developed to extend the shelf life of fresh chicken breast during refrigeration storage. First, OEO was inserted into the hydrophobic interior of β-CD to form an inclusion complex (OEO-MP) that maintained its excellent antioxidant and antibacterial activities. The formed OEO-MP was characterized using fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). In addition, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results demonstrated that β-CD could improve the thermal stability of OEO. The encapsulation efficiency reached 71.6 %, and OEO was released continuously from the OEO-MP. The lipid oxidation, total viable count (TVC) and sensory properties of chicken breasts were regularly monitored when OEO-MP was incorporated into the SA coating for chicken breast preservation. Compared with the uncoated group, the SA/OEO-MP-coated groups showed significantly reduced increases in pH, thiobarbituric acid reactive substances (TBARS), total volatile base nitrogen (TVB-N), and TVC, especially in the SA/OEO-MP1 group. In summary, the SA/OEO-MP coating could preserve the chicken breast by reducing lipid oxidation and inhibiting the proliferation of microorganisms. It would be developed as a prospective edible packaging for chicken preservation.
Collapse
Affiliation(s)
- Xiaoxi Yang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China.
| | - Dongxue Zhao
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Shaohui Ge
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China
| | - Pengsha Bian
- Hebei Research Center for Geoanalysis, Baoding 071051, China
| | - Hongmei Xue
- Department of Clinical Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang 050031, China
| | - Yumiao Lang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, Hebei University, Baoding 071002, China.
| |
Collapse
|
6
|
Li L, Lin Y, Agyekumwaa Addo K, Yu Y, Liao C. Effect of allyl isothiocyanate on the growth and virulence of Clostridium perfringens and its application on cooked pork. Food Res Int 2023; 172:113110. [PMID: 37689877 DOI: 10.1016/j.foodres.2023.113110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
The objective of this study is to explore the antibacterial action modes and virulence-inhibitory effects of allyl isothiocyanate (AITC) against Clostridium perfringens (C. perfringens). The minimum inhibitory concentration (MIC) of AITC against vegetative cells of Cp 13124 was 0.1 μL/mL, and the time-kill kinetics analysis revealed that AITC could significantly suppress the growth of Cp 13124. According to the results from scanning electron microscopy (SEM), fluorescence microscopy, and UV absorbance substance detection, the cell membrane of Cp 13124 was damaged upon AITC treatment, causing a loss of integrity and the release of intracellular substances. Meanwhile, the fluorescence quenching experiment indicated the interaction of AIT-C with membrane proteins, which caused changes in the conformation of membrane proteins. Measurement of reactive oxygen species (ROS) and flow cytometry analysis demonstrated that AITC could induce apoptosis through oxidative stress. The formation of Cp 13124 biofilms was inhibited by AITC using the crystalline violet method, which was possibly related to the inhibition of sliding motility. Finally, low concentrations of AITC could be used as an antibacterial agent to inhibit the outgrowth of Cp 13124 in cooked pork, suggesting that AITC is a promising candidate for novel preservatives in the meat business.
Collapse
Affiliation(s)
- Linying Li
- Research Center of Food Safety and Detection, College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yilin Lin
- Research Center of Food Safety and Detection, College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Keren Agyekumwaa Addo
- Research Center of Food Safety and Detection, College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yigang Yu
- Research Center of Food Safety and Detection, College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Caihu Liao
- Yingdong Food Science and Engineering Institute, Shaoguan University, Shaoguan 512005, China; Provincial Key Laboratory for Utilization and Conservation of Food and Medicinal Resourcesin Northern Guangdong, Shaoguan 512005, China.
| |
Collapse
|
7
|
Marin-Tinoco RI, Ortega-Ramírez AT, Esteban-Mendez M, Silva-Marrufo O, Barragan-Ledesma LE, Valenzuela-Núñez LM, Briceño-Contreras EA, Sariñana-Navarrete MA, Camacho-Luis A, Navarrete-Molina C. Antioxidant and Antibacterial Activity of Mexican Oregano Essential Oil, Extracted from Plants Occurring Naturally in Semiarid Areas and Cultivated in the Field and Greenhouse in Northern Mexico. Molecules 2023; 28:6547. [PMID: 37764323 PMCID: PMC10536881 DOI: 10.3390/molecules28186547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, the determination of the antioxidant and antibacterial activity of essential oils in wild plants, such as Mexican oregano (Lippia graveolens Kunth), has become increasingly important. The objective was to compare the antioxidant and antibacterial activity of Mexican oregano essential oil obtained from plants occurring naturally in semiarid areas (Wild1 and Wild2), and those cultivated in the field (CField) and greenhouse (CGreenhouse) in northern Mexico. The Mexican oregano essential oil extraction was performed using the hydrodistillation method, the antioxidant activity was determined using the ABTS method, and the antibacterial activity was assessed through bioassays under the microwell method at nine different concentrations. The aim was to determine the diameter of the inhibition zone and, consequently, understand the sensitivity level for four bacterial species. The results revealed an antioxidant activity ranging from 90% to 94% at the sampling sites, with Wild1 standing out for having the highest average antioxidant activity values. Likewise, six out of the nine concentrations analyzed showed some degree of sensitivity for all the sampling sites. In this regard, the 25 µL mL-1 concentration showed the highest diameter of inhibition zone values, highlighting the Wild2 site, which showed an average diameter greater than 30 mm for the four bacteria tested. Only in the case of S. typhi did the CGreenhouse site surpass the Wild2, with an average diameter of the inhibition zone of 36.7 mm. These findings contribute to the search for new antioxidant and antibacterial options, addressing the challenges that humanity faces in the quest for opportunities to increase life expectancy.
Collapse
Affiliation(s)
- Ruben I. Marin-Tinoco
- Faculty of Medicine and Nutrition, Juarez University of the State of Durango, Calle Constitucion 404, Zona Centro, Durango 34100, Durango, Mexico
| | - Angie Tatiana Ortega-Ramírez
- Management, Environment and Sustainability Research Group, Chemical and Environmental Engineering Department, Universidad de America, Bogotá 110311, Colombia
| | - Maricela Esteban-Mendez
- Interdisciplinary Research Center for Integral Regional Development Unit Durango, National Polytechnic Institute, Sigma 119, Fraccionamiento 20 de Noviembre II, Durango 34220, Durango, Mexico
| | - Oscar Silva-Marrufo
- Department of Engineering, National Technological of Mexico, Technological Institute of the Guadiana Valley, Carretera Durango-México, Km. 22.5, Ejido Villa Montemorelos, Durango 34371, Durango, Mexico
| | - Laura E. Barragan-Ledesma
- Faculty of Medicine and Nutrition, Juarez University of the State of Durango, Calle Constitucion 404, Zona Centro, Durango 34100, Durango, Mexico
| | - Luis M. Valenzuela-Núñez
- Faculty of Biological Sciences, Juarez University of the State of Durango, Gomez Palacio 35010, Durango, Mexico
| | - Edwin A. Briceño-Contreras
- Department of Chemical Area Environmental Technology, Technological University of Rodeo, Carretera Panamericana, Km. 159.4, Col. ETA, Rodeo 37560, Durango, Mexico
| | - Maria A. Sariñana-Navarrete
- Department of Chemical Area Environmental Technology, Technological University of Rodeo, Carretera Panamericana, Km. 159.4, Col. ETA, Rodeo 37560, Durango, Mexico
| | - Abelardo Camacho-Luis
- Faculty of Medicine and Nutrition, Juarez University of the State of Durango, Calle Constitucion 404, Zona Centro, Durango 34100, Durango, Mexico
| | - Cayetano Navarrete-Molina
- Department of Chemical Area Environmental Technology, Technological University of Rodeo, Carretera Panamericana, Km. 159.4, Col. ETA, Rodeo 37560, Durango, Mexico
| |
Collapse
|
8
|
Neagu R, Popovici V, Ionescu LE, Ordeanu V, Popescu DM, Ozon EA, Gîrd CE. Antibacterial and Antibiofilm Effects of Different Samples of Five Commercially Available Essential Oils. Antibiotics (Basel) 2023; 12:1191. [PMID: 37508287 PMCID: PMC10376212 DOI: 10.3390/antibiotics12071191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Essential oils (EOs) have gained economic importance due to their biological activities, and increasing amounts are demanded everywhere. However, substantial differences between the same essential oil samples from different suppliers are reported-concerning their chemical composition and bioactivities-due to numerous companies involved in EOs production and the continuous development of online sales. The present study investigates the antibacterial and antibiofilm activities of two to four samples of five commercially available essential oils (Oregano, Eucalyptus, Rosemary, Clove, and Peppermint oils) produced by autochthonous companies. The manufacturers provided all EOs' chemical compositions determined through GC-MS. The EOs' bioactivities were investigated in vitro against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). The antibacterial and antibiofilm effects (ABE% and, respectively, ABfE%) were evaluated spectrophotometrically at 562 and 570 nm using microplate cultivation techniques. The essential oils' calculated parameters were compared with those of three standard broad-spectrum antibiotics: Amoxicillin/Clavulanic acid, Gentamycin, and Streptomycin. The results showed that at the first dilution (D1 = 25 mg/mL), all EOs exhibited antibacterial and antibiofilm activity against all Gram-positive and Gram-negative bacteria tested, and MIC value > 25 mg/mL. Generally, both effects progressively decreased from D1 to D3. Only EOs with a considerable content of highly active metabolites revealed insignificant differences. E. coli showed the lowest susceptibility to all commercially available essential oils-15 EO samples had undetected antibacterial and antibiofilm effects at D2 and D3. Peppermint and Clove oils recorded the most significant differences regarding chemical composition and antibacterial/antibiofilm activities. All registered differences could be due to different places for harvesting the raw plant material, various technological processes through which these essential oils were obtained, the preservation conditions, and complex interactions between constituents.
Collapse
Affiliation(s)
- Răzvan Neagu
- Department of Pharmacognosy, Phytochemistry, and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
- Regenerative Medicine Laboratory, "Cantacuzino" National Military Medical Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Lucia Elena Ionescu
- Experimental Microbiology Laboratory, "Cantacuzino" National Military Medical Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Viorel Ordeanu
- Experimental Microbiology Laboratory, "Cantacuzino" National Military Medical Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Diana Mihaela Popescu
- Regenerative Medicine Laboratory, "Cantacuzino" National Military Medical Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Cerasela Elena Gîrd
- Department of Pharmacognosy, Phytochemistry, and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| |
Collapse
|
9
|
Mai TMN, Vu TBH, Le MH, Nguyen TTH, Trinh TTH, Le MH, Tran NN, Nguyen QL, Pham THY, Pham HN, Pham TT. Protective Effect of Willow ( Salix babylonica L.) on Fish Resistance to Vibrio parahaemolyticus and Vibrio alginolyticus. Antibiotics (Basel) 2023; 12:989. [PMID: 37370308 DOI: 10.3390/antibiotics12060989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Vibrio spp. cause vibriosis in many saltwater and freshwater aquatic species, such as fish, crustaceans, and mollusks. Vibrio parahaemolyticus and Vibrio alginolyticus are among the few Vibrio species commonly found in infections in fish. This study aimed at investigating the chemical composition and evaluating the antibacterial activities of Salix babylonica L. The ethyl acetate (LL2) and methanolic (LL3) extracts were used to evaluate the resistance of strains as V. parahaemolyticus LBT6 and VTCC 12233, and two strains of V. alginolyticus, NG20 and ATCC 17749, and compared their efficacy with cefotaxime in order to find an alternative to antibiotics in the treatment of vibriosis. The obtained results show that the LL2 extract, with its major components identified as chrysoeriol, luteolin, and β-sitosterol, exhibited a bacteriostatic effect against all the tested strains. In parallel, the LL3 extract, with the four major compounds luteolin-7-O-β-D-glucopyranoside, salicin, p-hydroxy benzoic acid, and β-sitosterol-3-O-β-D-glucopyranoside, showed significant bactericidal activity against these four strains; the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) varied from 2.0 to 3.0 μg/mL and from 3.5 to 5.0 μg/mL, respectively. Moreover, the LL3 extract could effectively increase the survival rate of the challenged fish at a dose of 5% (w/w) for the zebrafish (Danio rerio) and 3% (w/w) for the sea bass (Lates calcarifer). The LL3 extract showed a potential application of S. babylonica L. in the prevention and treatment of vibriosis in fish.
Collapse
Affiliation(s)
- Thi Minh Ngoc Mai
- Department of Testing and Quality Assurance, Hanoi Open University, 101 Nguyen Hien, Hai Ba Trun, Hanoi 11615, Vietnam
- Institute of Biological and Food Technology, Hanoi Open University, B101 Nguyen Hien, Hai Ba Trung, Hanoi 11615, Vietnam
| | - Thi Bich Huyen Vu
- Faculty of Biology, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi 11311, Vietnam
| | - Minh Ha Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Thi Thu Hien Nguyen
- Institute of Biological and Food Technology, Hanoi Open University, B101 Nguyen Hien, Hai Ba Trung, Hanoi 11615, Vietnam
| | - Thi Thu Hang Trinh
- Institute of Biological and Food Technology, Hanoi Open University, B101 Nguyen Hien, Hai Ba Trung, Hanoi 11615, Vietnam
| | - Minh Hai Le
- Faculty of Fisheries, Vinh University, Vinh 43105, Vietnam
| | - Nguyen Ngoc Tran
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue City 49116, Vietnam
| | - Quang Linh Nguyen
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue City 49116, Vietnam
| | - Thi Hai Yen Pham
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue City 49116, Vietnam
| | - Hoang Nam Pham
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Thi Tam Pham
- Institute of Biological and Food Technology, Hanoi Open University, B101 Nguyen Hien, Hai Ba Trung, Hanoi 11615, Vietnam
- Department for Scientific Research and International Cooperation, Hanoi Open University, B101 Nguyen Hien, Hai Ba Trung, Hanoi 11615, Vietnam
| |
Collapse
|
10
|
Bai X, Chen T, Liu X, Liu Z, Ma R, Su R, Li X, Lü X, Xia X, Shi C. Antibacterial Activity and Possible Mechanism of Litsea cubeba Essential Oil Against Shigella sonnei and Its Application in Lettuce. Foodborne Pathog Dis 2023; 20:138-148. [PMID: 37010405 DOI: 10.1089/fpd.2022.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Shigella sonnei, the causative agents of bacillary dysentery, remains a significant threat to public health. Litsea cubeba essential oil (LC-EO), one of the natural essential oils, exhibited promising biological activities. In this study, the antibacterial effects and possible mechanisms of LC-EO on S. sonnei and its application in lettuce medium were investigated. The minimum inhibitory concentration (MIC) of LC-EO against S. sonnei ATCC 25931 and CMCC 51592 was 4 and 6 μL/mL, respectively. The LC-EO could inhibit the growth of S. sonnei, and decreased S. sonnei to undetectable levels with 4 μL/mL for 1 h in Luria-Bertani broth. The antibacterial mechanism indicated that after the treatment of LC-EO, the production of reactive oxygen species and the activity of superoxide dismutase were significantly elevated in S. sonnei cells, and eventually led to the lipid oxidation product, the malondialdehyde content that significantly increased. Moreover, LC-EO at 2 MIC could destroy 96.51% of bacterial cell membrane integrity, and made S. sonnei cells to appear wrinkled with a rough surface, so that the intracellular adenosine triphosphate leakage was about 0.352-0.030 μmol/L. Finally, the results of application evaluation indicated that the addition of LC-EO at 4 μL/mL in lettuce leaves and 6 μL/mL in lettuce juice could decrease the number of S. sonnei to undetectable levels without remarkable influence on the lettuce leaf sensory quality. In summary, LC-EO exerted strong antibacterial activity and has the potential to control S. sonnei in food industry.
Collapse
Affiliation(s)
- Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tianxiao Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaoxiao Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Run Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xuejiao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Patel HK, Gomes EN, Wu Q, Patel N, Kobayashi DY, Wang C, Simon JE. Volatile metabolites from new cultivars of catnip and oregano as potential antibacterial and insect repellent agents. FRONTIERS IN PLANT SCIENCE 2023; 14:1124305. [PMID: 36909430 PMCID: PMC9995836 DOI: 10.3389/fpls.2023.1124305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Plant based natural products have been widely used as antibacterial and insect repellent agents globally. Because of growing resistance in bacterial plant pathogens and urban pests to current methods of control, combined with the long- and short-term negative impact of certain chemical controls in humans, non-target organisms, and the environment, finding alternative methods is necessary to prevent and/or mitigate losses caused by these pathogens and pests. The antibacterial and insect repellent activities of essential oils of novel cultivars of catnip (Nepeta cataria L. cv. CR9) and oregano (Origanum vulgare L. cv. Pierre) rich in the terpenes nepetalactone and carvacrol, respectively, were evaluated using the agar well diffusion assay and petri dish repellency assay. The essential oils exhibit moderate to high antibacterial activity against three plant pathogens, Pseudomonas cichorii, Pseudomonas syringae and Xanthomonas perforans of economic interest and the individual essential oils, their mixtures and carvacrol possess strong insect repellent activity against the common bed bug (Cimex lectularius L.), an urban pest of major significance to public health. In this study, the essential oils of catnip and oregano were determined to be promising candidates for further evaluation and development as antibacterial agents and plant-based insect repellents with applications in agriculture and urban pest management.
Collapse
Affiliation(s)
- Harna K. Patel
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Erik Nunes Gomes
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
- Federal Agency for Support and Evaluation of Graduate Education (CAPES), Ministry of Education of Brazil, Brasilia, DF, Brazil
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Nrupali Patel
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Donald Y. Kobayashi
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Changlu Wang
- Department of Entomology, Rutgers University, New Brunswick, NJ, United States
| | - James E. Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Piscataway, NJ, United States
- Center for Agricultural Food Ecosystems, Institute of Food, Nutrition & Health, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
12
|
He Y, Luo K, Hu X, Liu J, Hao M, Li Y, Xia X, Lü X, Shi C. Antibacterial Mechanism of Shikonin Against Vibrio vulnificus and Its Healing Potential on Infected Mice with Full-Thickness Excised Skin. Foodborne Pathog Dis 2023; 20:67-79. [PMID: 36779943 DOI: 10.1089/fpd.2022.0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Shikonin has anticancer, anti-inflammatory, and wound healing activities. Vibrio vulnificus is an important marine foodborne pathogen with a high fatality rate and rapid pathogenesis that can infect humans through ingestion and wounds. In this study, the antibacterial activity and possible antibacterial mechanism of shikonin against V. vulnificus were investigated. In addition, the ability of shikonin to control V. vulnificus infection in both pathways was assessed by artificially contaminated oysters and full-thickness excised skin-infected mice. Shikonin treatment can cause abnormal cell membrane function, as evidenced by hyperpolarization of the cell membrane, significant decreased intracellular ATP concentration (p < 0.05), significant increased intracellular reactive oxygen species and malondialdehyde content (p < 0.05), decreased cell membrane integrity, and changes in cell morphology. Shikonin at 40 and 80 μg/mL reduced bacterial numbers in shikonin-contaminated oysters by 3.58 and 2.18 log colony-forming unit (CFU)/mL. Shikonin can promote wound healing in mice infected with V. vulnificus by promoting the formation of granulation tissue, hair follicles, and sebaceous glands, promoting epithelial cell regeneration and epidermal growth factor production. These findings suggest that shikonin has a strong inactivation effect on V. vulnificus and can be used in food production and wound healing to effectively control V. vulnificus and reduce the number of diseases associated with it.
Collapse
Affiliation(s)
- Yifei He
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Kunyao Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xinquan Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengru Hao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yulu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Tian B, Liu J, Yang W, Wan JB. Biopolymer Food Packaging Films Incorporated with Essential Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1325-1347. [PMID: 36628408 DOI: 10.1021/acs.jafc.2c07409] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Petroleum-based packaging materials are typically nonbiodegradable, which leads to significant adverse environmental and health issues. Therefore, developing novel efficient, biodegradable, and nontoxic food packaging film materials has attracted increasing attention from researchers. Due to significant research and advanced technology, synthetic additives in packaging materials are progressively replaced with natural substances such as essential oils (EOs). EOs demonstrate favorable antioxidant and antibacterial properties, which would be an economical and effective alternative to synthetic additives. This review summarized the possible antioxidant and antimicrobial mechanisms of various EOs. We analyzed the properties and performance of food packaging films based on various biopolymers incorporated with EOs. The progress in intelligent packaging materials has been discussed as a prospect of food packaging materials. Finally, the current challenges regarding the practical application of EOs-containing biopolymer films in food packaging and areas of future research have been summarized.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, Macau SAR, China
| | - Wanzhexi Yang
- Department of Physiology, Pharmacology and Neuroscience, University College London, London WC1E 6BT, United Kingdom
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, Macau SAR, China
| |
Collapse
|
14
|
Luo K, Kang S, Guo M, Shen C, Wang L, Xia X, Lü X, Shi C. Evaluation of the antibacterial mechanism and biofilm removal effect of eugenol on Vibrio vulnificus and its application in fresh oysters. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Chemical Composition, Antimicrobial and Antioxidant Activity of Essential Oil from Allium tenuissimum L. Flowers. Foods 2022; 11:foods11233876. [PMID: 36496684 PMCID: PMC9739426 DOI: 10.3390/foods11233876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Allium tenuissimum L. as a kind of food condiment in northern China, is popular among more and more consumers owning to its special flavor from the flower. However, its composition has not been widely studied. Hence, the aim of this study was to investigate the chemical composition and antimicrobial and antioxidant activity of essential oil from Allium tenuissimum L. flowers. Gas chromatography−mass spectrometry (GC-MS) was applied to detect the chemical composition. The antimicrobial activity against foodborne pathogens was evaluated by measuring the zones of inhibition (ZOI), the minimal inhibitory concentration (MIC), and the minimal bactericidal concentration (MBC). The antioxidant effect was tested by the scavenging capacity on DPPH, ABTS+•, and •OH. The results of GC-MS showed that 72 volatile components were isolated and the structures 68 of them were identified, which comprised about 91.92% of the total composition of the oil. Among these compounds, terpenoid compounds and sulfurous compounds had the highest contents, especially dimethyl trisulfide. Our investigation demonstrated that the essential oil has better antimicrobial efficiency to Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Aspergillus flavus, and Saccharomyces cerevisiae. In addition, the essential oil had a strong stability to UV. Furthermore, the essential oil exhibited a high radical-scavenging effect on DPPH, ABTS+•, and •OH, which is significant for application in the food industry. In conclusion, the essential oil could be used as an inexpensive and natural antibacterial and antioxidant agent in food.
Collapse
|
16
|
Rout S, Tambe S, Deshmukh RK, Mali S, Cruz J, Srivastav PP, Amin PD, Gaikwad KK, Andrade EHDA, Oliveira MSD. Recent trends in the application of essential oils: The next generation of food preservation and food packaging. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Su R, Guo P, Zhang Z, Wang J, Guo X, Guo D, Wang Y, Lü X, Shi C. Antibacterial Activity and Mechanism of Linalool against Shigella sonnei and Its Application in Lettuce. Foods 2022. [PMCID: PMC9602298 DOI: 10.3390/foods11203160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Shigella sonnei (S. sonnei) infection accounted for approximately 75% of annual outbreaks of shigellosis, with the vast majority of outbreaks due to the consumption of contaminated foods (e.g., fresh vegetables, potato salad, fish, beef, etc.). Thus, we investigated the antibacterial effect and mechanism of linalool on S. sonnei and evaluated the effect of linalool on the sensory quality of lettuce. The minimum inhibitory concentration (MIC) of linalool against S. sonnei ATCC 25931 was 1.5 mg/mL. S. sonnei was treated with linalool at 1× MIC for 30 min and the amount of bacteria was decreased below the detection limit (1 CFU/mL) in phosphate-buffered saline (PBS) and Luria-Bertani (LB) medium. The bacterial content of the lettuce surface was reduced by 4.33 log CFU/cm2 after soaking with linalool at 2× MIC. Treatment with linalool led to increased intracellular reactive oxygen species (ROS) levels, decreased intracellular adenosine-triphosphate (ATP) content, increased membrane lipid oxidation, damaged cell membrane integrity, and hyperpolarized cell membrane potential in S. sonnei. The application of linalool to lettuce had no effect on the color of lettuce compared to the control. The sensory evaluation results showed that linalool had an acceptable effect on the sensory quality of lettuce. These findings indicate that linalool played an antibacterial effect against S. sonnei and had potential as a natural antimicrobial for the inhibition of this foodborne pathogen.
Collapse
Affiliation(s)
- Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Peng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Ziruo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jingzi Wang
- School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Xinyi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Correspondence: ; Tel.: +86-29-8709-2486; Fax: +86-29-8709-1391
| |
Collapse
|
18
|
Li J, Wang R, Zhao L, Wang M, Wang R, Guo D, Yang Y, Li Y, Guan N, Shi Y, Xia X, Shi C. Stress tolerance and transcriptomic response analysis of Yersinia enterocolitica adapted to Origanum vulgare L. essential oil. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Zhan X, Tan Y, Lv Y, Fang J, Zhou Y, Gao X, Zhu H, Shi C. The Antimicrobial and Antibiofilm Activity of Oregano Essential Oil against Enterococcus faecalis and Its Application in Chicken Breast. Foods 2022; 11:2296. [PMID: 35954060 PMCID: PMC9368637 DOI: 10.3390/foods11152296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Oregano essential oil (OEO) possesses anti-inflammatory, antioxidant, and cancer-suppressive properties. Enterococcus faecalis is a foodborne opportunistic pathogen that can be found in nature and the food processing industry. The goal of this investigation was to explore the antimicrobial action and mechanism of OEO against E. faecalis, inactivation action of OEO on E. faecalis in mature biofilms, and its application in chicken breast. The minimum inhibitory concentration (MIC) of OEO against E. faecalis strains (ATCC 29212 and nine isolates) ranged from 0.25 to 0.50 μL/mL. OEO therapy reduced intracellular adenosine triphosphate (ATP) levels, caused cell membrane hyperpolarization, increased the intracellular reactive oxygen species (ROS), and elevated extracellular malondialdehyde (MDA) concentrations. Furthermore, OEO treatment diminished cell membrane integrity and caused morphological alterations in the cells. In biofilms on stainless-steel, OEO showed effective inactivation activity against E. faecalis. OEO reduced the number of viable cells, cell viability and exopolysaccharides in the biofilm, as well as destroying its structure. Application of OEO on chicken breast results in a considerable reduction in E. faecalis counts and pH values, in comparison to control samples. These findings suggest that OEO could be utilized as a natural antibacterial preservative and could effectively control E. faecalis in food manufacturing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (X.Z.); (Y.T.); (Y.L.); (J.F.); (Y.Z.); (X.G.); (H.Z.)
| |
Collapse
|
20
|
Wang D, Li C, Pan C, Wang Y, Xiang H, Feng Y, Yang X, Chen S, Zhao Y, Wu Y, Li L, Kawai Y, Yamazaki K, Yamaki S. Antimicrobial activity and mechanism of action of oregano essential oil against Morganella psychrotolerans and potential application in tuna. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Zhang Z, Zhao Y, Chen X, Li W, Li W, Du J, Wang L. Effects of Cinnamon Essential Oil on Oxidative Damage and Outer Membrane Protein Genes of Salmonella enteritidis Cells. Foods 2022; 11:2234. [PMID: 35954002 PMCID: PMC9368406 DOI: 10.3390/foods11152234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 12/20/2022] Open
Abstract
Salmonella is an important pathogen causing food poisoning. Food safety and health are the themes of today′s society. As a class of food-borne pathogens, Salmonella enteritidis had become one of the common zoonotic pathogens. Cinnamon essential oil (CEO) had been reported as an antibacterial agent, but there are few studies on its antibacterial mechanism. This study investigated the effects of CEO on oxidative damage and outer membrane protein genes of Salmonella enteritidis cells. First, the reactive oxygen species content in bacteria treated with different concentrations of cinnamon essential oil was determined by fluorescence spectrophotometry, and the effects of superoxide dismutase (SOD), catalase (CAT) and superoxide dismutase (SOD), and catalase (CAT) and peroxidase (POD) were determined by the kit method. The activity of POD and the content of malondialdehyde (MDA) were investigated to investigate the oxidative damage of CEO to Salmonella enteritidis cells. By analyzing the effect of CEO on the Salmonella enteritidis cell membrane’s outer membrane protein gene expression, the mechanism of CEO′s action on the Salmonella enteritidis cell membrane was preliminarily discussed. The results showed that CEO treatment had an obvious oxidative damaging effect on Salmonella enteritidis. Compared with the control group, the increase in CEO concentration caused a significant increase in the bacteria ROS content. The observation technique experiment found that with the increase in CEO concentration, the number of stained cells increased, which indicated that CEO treatment would increase the ROS level in the cells, and it would also increase with the increase in CEO concentration, thus causing the oxidation of cells and damage. In addition, CEO treatment also caused the disruption of the balance of the cellular antioxidant enzymes (SOD, CAT, POD) system, resulting in an increase in the content of MDA, a membrane lipid metabolite, and increased protein carbonylation, which ultimately inhibited the growth of Salmonella enteritidis. The measurement results of cell membrane protein gene expression levels showed that the Omp genes to be detected in Salmonella enteritidis were all positive, which indicated that Salmonella enteritidis carried these four genes. Compared with the control group, the relative expressions of OmpF, OmpA and OmpX in the CEO treatment group were significantly increased (p < 0.05), which proved that the cell function was disturbed. Therefore, the toxicity of CEO to Salmonella enteritidis could be attributed to the damage of the cell membrane and the induction of oxidative stress at the same time. It was speculated that the antibacterial mechanism of CEO was the result of multiple effects. This work was expected to provide a theoretical basis for the development of new natural food preservatives and the prevention and control of Salmonella enteritidis.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (X.C.); (W.L.); (W.L.); (J.D.); (L.W.)
| | | | | | | | | | | | | |
Collapse
|