1
|
Guan T, Wu X, Hou R, Tian L, Huang Q, Zhao F, Liu Y, Jiao S, Xiang S, Zhang J, Li D, Luo J, Jin Z, He Z. Application of Clostridium butyricum, Rummeliibacillus suwonensis, and Issatchenkia orientalis for Nongxiangxing baijiu fermentation: Improves the microbial communities and flavor of upper fermented grain. Food Res Int 2023; 169:112885. [PMID: 37254333 DOI: 10.1016/j.foodres.2023.112885] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
Ethyl hexanoate and ethyl butyrate are essential to the flavor compounds in Nongxiangxing baijiu, but low levels of these two esters in upper fermented grains (FG) decreases the quality of upper distilled baijiu, representing the main challenge in Nongxiangxing baijiu production. This paper enhanced fermentation by inoculating functional Clostridium butyricum, Rummeliibacillus suwonensis, and Issatchenkia orientalis strains into upper FG. The results showed that the ethyl butyrate content in the upper FG increased significantly and the content of ethyl hexanoate did improve from the results of many determinations. High-throughput sequencing indicated that the dominant phyla in the FG were Firmicutes, Actinobacteriota, Proteobacteria, Ascomycota, and Basidiomycota. The canonical correspondence analysis (CCA) and person correlation network revealed the relationship between the microbial community, physicochemical environment, and flavor compounds. The temperature, oxygen, and acidity were closely related to the microbial community, while most flavor compounds were positively correlated with Caldicoprobacter, Caproiciproducens, Delftia, Hydrogenispora, Thermoactinomyces, Issatchenkia Bacillus, and Aspergillus. These results helped improve the quality of Nongxiangxing baijiu.
Collapse
Affiliation(s)
- Tongwei Guan
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China.
| | - Xiaotian Wu
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | - Rui Hou
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | - Lei Tian
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | - Qiao Huang
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | - Fan Zhao
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | - Ying Liu
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | - Shirong Jiao
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | | | - Jiaxu Zhang
- Chengdu Shuzhiyuan of Liquor Co., Ltd, Chengdu 611330, PR China
| | - Dong Li
- Chengdu Shuzhiyuan of Liquor Co., Ltd, Chengdu 611330, PR China
| | - Jing Luo
- Chengdu Shuzhiyuan of Liquor Co., Ltd, Chengdu 611330, PR China
| | - Zhengyu Jin
- School of Food and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zongjun He
- Sichuan Tujiu Liquor Co., Ltd, Chengdu 637919, China
| |
Collapse
|
2
|
Zhou H, Xu B, Xu S, Jiang S, Mu D, Wu X, Li X. Bacterial Communities Found in Pit-Wall Mud and Factors Driving Their Evolution. Foods 2023; 12:foods12071419. [PMID: 37048240 PMCID: PMC10093803 DOI: 10.3390/foods12071419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Pit-wall mud (PWM) fosters bacterial communities involved in Baijiu production. PWM varies depending on pit age and height. In this study, we explored the bacterial communities in PWM and factors driving their evolution. The abundance and diversity of bacterial communities were low in new PWM (NPWM). In old PWM (OPWM), similar but diverse bacterial communities were observed at different heights. Lactobacillus was the predominant genus in NPWM, and Caproiciproducens, Aminobacterium, Hydrogenispora, Lactobacillus, Petrimonas, Syntrophomonas, and Sedimentibacter were the dominant genera in OPWM. A decrease was noted in the abundance of Lactobacillus, which indicated evolution. Among all the physicochemical properties, pH had the highest degree of interpretation with an R2 value of 0.965. pH also exerted the strongest effect on bacterial communities. The path coefficients of pH on bacterial community diversity and abundance were 0.886 and 0.810, respectively. Caproiciproducens and Clostridium sensu stricto 12 metabolized lactic acid, inhibiting the growth of Lactobacillus at a suitable pH, which led to the maturation of PWM. Our findings enrich the literature on the evolution of bacterial communities in PM and the maturation of PM.
Collapse
|
3
|
Li H, Liu S, Liu Y, Hui M, Pan C. Functional microorganisms in Baijiu Daqu: Research progress and fortification strategy for application. Front Microbiol 2023; 14:1119675. [PMID: 36778882 PMCID: PMC9911690 DOI: 10.3389/fmicb.2023.1119675] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Daqu is a saccharifying and fermenting starter in the production of Chinese Baijiu; its quality directly affects the quality of Baijiu. The production of Daqu is highly environment-dependent, and after long-term natural domestication, it is rich in a wide variety of microorganisms with a stable composition, which provide complex and diverse enzymes and flavor (precursor) substances and microbiota for Jiupei (Fermented grains) fermentation. However, inoculation with a relatively stable microbial community can lead to a certain upper limit or deficiencies of the physicochemical properties (e.g., saccharification capacity, esterification capacity) of the Daqu and affect the functional expression and aroma formation of the Daqu. Targeted improvement of this problem can be proposed by selecting functional microorganisms to fortify the production of Daqu. This review introduced the isolation, screening, identification and functional characteristics of culture-dependent functional microorganisms in Baijiu-brewing, the core functional microbiota community of Daqu, and the related research progress of functional microorganisms fortified Daqu, and summarized the fortifying strategies of functional microorganisms, aiming to further deepen the application of functional microorganisms fortification in Daqu fermentation and provide ideas for the flavor regulation and quality control of Baijiu.
Collapse
Affiliation(s)
- Haideng Li
- College of Biological Engineering, Henan University of Technology, Henan, Zhengzhou, China,College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Shengyuan Liu
- International Education College, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanbo Liu
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Ming Hui
- College of Biological Engineering, Henan University of Technology, Henan, Zhengzhou, China
| | - Chunmei Pan
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China,*Correspondence: Chunmei Pan,
| |
Collapse
|
4
|
Shang C, Li Y, Zhang J, Gan S. Analysis of Bacterial Diversity in Different Types of Daqu and Fermented Grains From Danquan Distillery. Front Microbiol 2022; 13:883122. [PMID: 35865918 PMCID: PMC9295720 DOI: 10.3389/fmicb.2022.883122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial communities in high-temperature Daqu and fermented grains are important for brewing Jiang-flavor Baijiu such as Danquan Baijiu. Daqu is a saccharifying and fermenting agent, which has a significant impact on the flavor of Baijiu. However, bacterial communities in three different types of samples from the Danquan distillery (dqjq_ck, dqjqcp, and dqjp3) were still unclear, which limited further development of Danquan Baijiu. “dqjq_ck” and “dqjqcp” indicate high-temperature Daqu at days 45 and 135, respectively. “dqjp3” indicates fermented grains. In this study, the bacterial communities of three samples were analyzed by Illumina Miseq high-throughput sequencing. The bacterial communities of three samples primarily composed of thermophilic bacteria and bacteria with stress resistance. The most abundant species in dqjq_ck, dqjqcp, and dqjp3 were Comamonas, Bacillus, and unclassified Lactobacillales, respectively. The main bacteria included Bacillus, Comamonas, Myroides, Paenibacillus, Acetobacter, Kroppenstedtia, Staphylococcus, Saccharopolyspora, Planifilum, Lactobacillus, Acinetobacter, Oceanobacillus, Enterococcus, Thermoactinomyces, Lactococcus, Streptomyces, Saccharomonospora, Tepidimicrobium, Anaerosalibacter, unclassified_Lactobacillales, unclassified_Thermoactinomycetaceae_1, unclassified_Bacillaceae_2, unclassified_Bacillales, unclassified_Microbacteriaceae, unclassified_Rhodobacteraceae, unclassified_Actinopolysporineae, and unclassified_Flavobacteriaceae in three samples (percentage was more than 1% in one of three samples). In our study, the succession of microbiota in three samples representing three important stages of Danquan Baijiu brewing was revealed. This article lays a good foundation for understanding the fermentation mechanism and screening some excellent indigenous bacteria to improve the quality of Danquan Baijiu in future.
Collapse
Affiliation(s)
- Changhua Shang
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), Guilin, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Changhua Shang
| | - Yujia Li
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
| | - Jin Zhang
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
| | - Shanling Gan
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
| |
Collapse
|