1
|
Leonardi GR, Aiello D, Di Pietro C, Gugliuzzo A, Tropea Garzia G, Polizzi G, Voglmayr H. Thyridiumlauri sp. nov. (Thyridiaceae, Thyridiales): a new pathogenic fungal species of bay laurel from Italy. MycoKeys 2024; 110:211-236. [PMID: 39584031 PMCID: PMC11584904 DOI: 10.3897/mycokeys.110.129228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024] Open
Abstract
Laurusnobilis is an important Mediterranean tree and shrub native to Italy that is also commercially grown as spice and ornamental plant. Field surveys conducted since 2021 in Sicily (Italy) revealed that bay laurel plants in urban and private gardens and nurseries were severely affected by symptoms of stem blight and internal necrosis, which were associated with ambrosia beetle entry holes in the bark and internal wood galleries. The occurring ambrosia beetle was identified as Xylosandruscompactus, an invasive wood-boring pest previously reported from Sicily. Investigation of fungi from symptomatic tissues primarily resulted in the isolation of Thyridium-like colonies. The main symbiont of X.compactus, Ambrosiellaxylebori, was also isolated from infested plants. Phylogenetic analyses of a combined matrix of ITS, LSU, act1, rpb2, tef1, and tub2 gene regions revealed that the isolated Thyridium-like colonies represent a new fungal species within the genus Thyridium. Based on both phylogeny and morphology, the new isolated fungus is described as Thyridiumlauri sp. nov. Moreover, two recently described species, Phialemoniopsishipposidericola and Phialemoniopsisxishuangbannaensis, are transferred to the genus Thyridium due to the confirmed synonymy of both genera, as supported by molecular phylogenies. Pathogenicity test conducted on potted plants demonstrated that T.lauri is pathogenic to bay laurel, causing internal necrosis and stem blight. The new species was consistently re-isolated from the symptomatic tissue beyond the inoculation point, thereby fulfilling Koch's postulates. This study represents the first report of a new pathogenic fungus, T.lauri, causing stem blight and internal necrosis of bay laurel plants and associated with infestation of the invasive ambrosia beetle X.compactus.
Collapse
Affiliation(s)
- Giuseppa Rosaria Leonardi
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Dalia Aiello
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Chiara Di Pietro
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Antonio Gugliuzzo
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Giovanna Tropea Garzia
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Giancarlo Polizzi
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, AustriaUniversity of ViennaViennaAustria
| |
Collapse
|
2
|
Yang H, Huang X, Yang M, Zhang X, Tang F, Gao B, Gong M, Liang Y, Liu Y, Qian X, Li H. Advanced analytical techniques for authenticity identification and quality evaluation in Essential oils: A review. Food Chem 2024; 451:139340. [PMID: 38678649 DOI: 10.1016/j.foodchem.2024.139340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Essential oils (EO), secondary metabolites of plants are fragrant oily liquids with antibacterial, antiviral, anti-inflammatory, anti-allergic, and antioxidant effects. They are widely applied in food, medicine, cosmetics, and other fields. However, the quality of EOs remain uncertain owing to their high volatility and susceptibility to oxidation, influenced by factors such as the harvesting season, extraction, and separation techniques. Additionally, the huge economic value of EOs has led to a market marked by widespread and varied adulteration, making the assessment of their quality challenging. Therefore, developing simple, quick, and effective identification techniques for EOs is essential. This review comprehensively summarizes the techniques for assessing EO quality and identifying adulteration. It covers sensory evaluation, physical and chemical property evaluation, and chemical composition analysis, which are widely used and of great significance for the quality evaluation and adulteration detection of EOs.
Collapse
Affiliation(s)
- Huda Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoying Huang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China.
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaofei Zhang
- Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China; College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Fangrui Tang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China
| | - Beibei Gao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Mengya Gong
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yong Liang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yang Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xingyi Qian
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huiting Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China.
| |
Collapse
|
3
|
Fantasma F, Samukha V, Aliberti M, Colarusso E, Chini MG, Saviano G, De Felice V, Lauro G, Casapullo A, Bifulco G, Iorizzi M. Essential Oils of Laurus nobilis L.: From Chemical Analysis to In Silico Investigation of Anti-Inflammatory Activity by Soluble Epoxide Hydrolase (sEH) Inhibition. Foods 2024; 13:2282. [PMID: 39063366 PMCID: PMC11276180 DOI: 10.3390/foods13142282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Laurus nobilis L. is commonly used in folk medicine in the form of infusion or decoction to treat gastrointestinal diseases and flatulence as a carminative, antiseptic, and anti-inflammatory agent. In this study, the essential oil (EO) composition of wild-grown L. nobilis L. leaves collected from seven different altitudinal locations in the Molise region and adjacent regions (Abruzzo and Campania) was investigated. EOs from the leaves were obtained by hydrodistillation and analyzed by GC-FID and GC/MS, and 78 compounds were identified. The major oil components were 1,8-cineol (43.52-31.31%), methyl-eugenol (14.96-4.07%), α-terpinyl acetate (13.00-8.51%), linalool (11.72-1.08%), sabinene (10.57-4.85%), α-pinene (7.41-3.61%), eugenol (4.12-1.97%), and terpinen-4-ol (2.33-1.25%). Chemometric techniques have been applied to compare the chemical composition. To shed light on the nutraceutical properties of the main hydrophobic secondary metabolites (≥1.0%) of laurel EOs, we assessed the in vitro antioxidant activities based on 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging activity and the reducing antioxidant power by using a ferric reducing power (FRAP) assay. Furthermore, we highlighted the anti-inflammatory effects of seven EOs able to interfere with the enzyme soluble epoxide hydrolase (sEH), a key enzyme in the arachidonic acid cascade, in concentrations ranging from 16.5 ± 4.3 to 8062.3 ± 580.9 mg/mL. Thanks to in silico studies, we investigated and rationalized the observed anti-inflammatory properties, ascribing the inhibitory activity toward the disclosed target to the most abundant volatile phytochemicals (≥1.0%) of seven EOs.
Collapse
Affiliation(s)
- Francesca Fantasma
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Vadym Samukha
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Michela Aliberti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Ester Colarusso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Gabriella Saviano
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Vincenzo De Felice
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Maria Iorizzi
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| |
Collapse
|
4
|
Ali S, Ekbbal R, Salar S, Yasheshwar, Ali SA, Jaiswal AK, Singh M, Yadav DK, Kumar S, Gaurav. Quality Standards and Pharmacological Interventions of Natural Oils: Current Scenario and Future Perspectives. ACS OMEGA 2023; 8:39945-39963. [PMID: 37953833 PMCID: PMC10635672 DOI: 10.1021/acsomega.3c05241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023]
Abstract
Medicinal plants are rich sources of natural oils such as essential and fixed oils used traditionally for nutritive as well as medicinal purposes. Most of the traditional formulations or phytopharmaceutical formulations contain oil as the main ingredient due to their own therapeutic applications and thus mitigating several pathogeneses such as fungal/bacterial/viral infection, gout, psoriasis, analgesic, antioxidant, skin infection, etc. Due to the lack of quality standards and progressive adulteration in the natural oils, their therapeutic efficacy is continuously deteriorated. To develop quality standards and validate scientific aspects on essential oils, several chromatographic and spectroscopic techniques such as HPTLC, HPLC, NMR, LC-MS, and GC-MS have been termed as the choices of techniques for better exploration of metabolites, hence sustaining the authenticity of the essential oils. In this review, chemical profiling and quality control aspects of essential or fixed oils have been explored from previously reported literature in reputed journals. Methods of chemical profiling, possible identified metabolites in essential oils, and their therapeutic applications have been described. The outcome of the review reveals that GC-MS/MS, LC-MS/MS, and NMR-based chromatographic and spectroscopic techniques are the most liable, economic, precise, and accurate techniques for determining the spuriousness or adulteration of oils based on their qualitative and quantitative chemical profiling studies. This review occupies the extensive information about the quality standards of several oils obtained from natural sources for their regulatory aspects via providing the detailed methods used in chemoprofiling techniques. Hence, this review helps researchers in further therapeutic exploration as well as quality-based standardization for their regulatory purpose.
Collapse
Affiliation(s)
- Shadab Ali
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Rustam Ekbbal
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Sapna Salar
- BBDIT
College of Pharmacy, Ghaziabad, Uttar Pradesh 201206, India
| | - Yasheshwar
- Department
of Botany, Acharya Narendra Dev College
(University of Delhi), Govindpuri,
Kalkaji, New Delhi 110019, India
| | - Sayad Ahad Ali
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Aakash Kumar Jaiswal
- School
of Pharmaceutical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| | - Mhaveer Singh
- Pharmacy
Academy, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Dinesh Kumar Yadav
- Department
of Pharmacognosy, SGT College of Pharmacy, SGT University, Gurugram, Haryana 122505, India
| | - Santosh Kumar
- Department
of Botany, Maharaja Bijli Paasi Government
Post Graduate College, Sector M, Ashiyana, Lucknow, Uttar Pradesh 226012, India
| | - Gaurav
- IIMT
College of Medical Sciences, IIMT University, O Pocket, Ganga Nagar, Meerut, Uttar Pradesh 250001, India
| |
Collapse
|
5
|
Julizan N, Ishmayana S, Zainuddin A, Van Hung P, Kurnia D. Potential of Syzygnium polyanthum as Natural Food Preservative: A Review. Foods 2023; 12:2275. [PMID: 37372486 DOI: 10.3390/foods12122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Food preservation is one of the strategies taken to maintain the level of public health. Oxidation activity and microbial contamination are the primary causes of food spoilage. For health reasons, people prefer natural preservatives over synthetic ones. Syzygnium polyanthum is widely spread throughout Asia and is utilized as a spice by the community. S. polyanthum has been found to be rich in phenols, hydroquinones, tannins, and flavonoids, which are potential antioxidants and antimicrobial agents. Consequently, S. polyanthum presents a tremendous opportunity as a natural preservative. This paper reviews recent articles about S. polyanthum dating back to the year 2000. This review summarizes the findings of natural compounds presented in S. polyanthum and their functional properties as antioxidants, antimicrobial agents, and natural preservatives in various types of food.
Collapse
Affiliation(s)
- Nur Julizan
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Safri Ishmayana
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Achmad Zainuddin
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Pham Van Hung
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 721400, Vietnam
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
6
|
Ailli A, Handaq N, Touijer H, Gourich AA, Drioiche A, Zibouh K, Eddamsyry B, El Makhoukhi F, Mouradi A, Bin Jardan YA, Bourhia M, Elomri A, Zair T. Phytochemistry and Biological Activities of Essential Oils from Six Aromatic Medicinal Plants with Cosmetic Properties. Antibiotics (Basel) 2023; 12:antibiotics12040721. [PMID: 37107083 PMCID: PMC10135202 DOI: 10.3390/antibiotics12040721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
In this work, the chemical composition and antioxidant and antimicrobial activities of the essential oils (EOs) of six species-Laurus nobilis, Chamaemelum nobile, Citrus aurantium, Pistacia lentiscus, Cedrus atlantica, and Rosa damascena-have been studied. Phytochemical screening of these plants revealed the presence of primary metabolites, namely, lipids, proteins, reducing sugars, and polysaccharides, and also secondary metabolites such as tannins, flavonoids, and mucilages. The essential oils were extracted by hydrodistillation in a Clevenger-type apparatus. The yields are between 0.06 and 4.78% (mL/100 g). The analysis of the chemical composition carried out by GC-MS showed the presence of 30 to 35 compounds and represent between 99.97% and 100% of the total composition of EOs, with a variation in the chemical composition detected at the level of the majority compounds between these species. Indeed, in the EO of Laurus nobilis, 1,8-cineole (36.58%) is the major component. In Chamaemelum nobile EO, the most abundant compound is angelylangelate (41.79%). The EO of Citrus aurantium is rich in linalool (29.01%). The EO of Pistacia lentiscus is dominated by 3-methylpentylangelate (27.83%). The main compound of Cedrus atlantica is β-himachalene (40.19%), while the EO of Rosa damascenaa flowers is rich in n-nonadecane (44.89%). The analysis of the similarity between the EOs of the plants studied by ACH and ACP showed that the chemical composition of the EOs makes it possible to separate these plants into three groups: the first represented by Chamaemelum nobile, because it is rich in oxygenated monoterpenes, the second defined Cedrus atlantica and Rosa damascena, which are rich in sesquiterpenes, and the third gathers Pistacia lentiscus, Laurus nobilis and Citrus aurantium, which are composed of oxygenated sesquiterpenes and monoterpenes (these three species are very close). The study of the antioxidant activity showed that all the EOs tested have a high capacity for scavenging free radicals from DPPH. The EOs of Laurus nobilis and Pistacia lentiscus showed the highest activity, 76.84% and 71.53%, respectively, followed by Cedrus atlantica EO (62.38%) and Chamaemelum nobile (47.98%) then Citrus aurantium EO (14.70%). Antimicrobial activity EO was tested against eight bacterial strains and eight fungal strains; the results showed that EOs exhibit significant bactericidal and fungicidal activities against all the microorganisms tested, of which the MICs of the bacterial strains start with 5 mg/mL, while the MICs of the fungal strains are between 0.60 mg/mL and 5 mg/mL. Thus, these EOs rich in antimicrobial and antioxidant components can serve as a natural alternative; this confirms their use as additives in cosmetics.
Collapse
Affiliation(s)
- Atika Ailli
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P.11201 Zitoune, Meknes 50070, Morocco
| | - Nadia Handaq
- Laboratory of Biology, Environmental and Sustainable Development, Hight Normal School, Abdelmalek Essaadi University, Tetouan 93000, Morocco
| | - Hanane Touijer
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P.11201 Zitoune, Meknes 50070, Morocco
| | - Aman Allah Gourich
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P.11201 Zitoune, Meknes 50070, Morocco
| | - Aziz Drioiche
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P.11201 Zitoune, Meknes 50070, Morocco
| | - Khalid Zibouh
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P.11201 Zitoune, Meknes 50070, Morocco
| | - Brahim Eddamsyry
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P.11201 Zitoune, Meknes 50070, Morocco
| | - Fadoua El Makhoukhi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P.11201 Zitoune, Meknes 50070, Morocco
| | - Aicha Mouradi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P.11201 Zitoune, Meknes 50070, Morocco
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laaoune 70000, Morocco
| | - Abdelhakim Elomri
- University of Rouen Normandy, INSA Rouen Normandy and CNRS, Laboratory of Organic, Bioorganic Chemistry, Reactivity and analysis (COBRA-UMR 6014), 76000 Rouen, France
| | - Touriya Zair
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P.11201 Zitoune, Meknes 50070, Morocco
| |
Collapse
|
7
|
Dilucia F, Rutigliano M, Libutti A, Quinto M, Spadaccino G, Liberatore MT, Lauriola M, di Luccia A, la Gatta B. Effect of a Novel Pretreatment Before Freeze-Drying Process on the Antioxidant Activity and Polyphenol Content of Malva sylvestris L., Calendula officinalis L., and Asparagus officinalis L. Infusions. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
8
|
The Use of Natural Methods to Control Foodborne Biofilms. Pathogens 2022; 12:pathogens12010045. [PMID: 36678393 PMCID: PMC9865977 DOI: 10.3390/pathogens12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Biofilms are large aggregates of various species of bacteria or other microorganisms tightly attached to surfaces through an intricate extracellular matrix. These complex microbial communities present quite the challenge in the food processing industry, as conditions such as raw meats and diverse food product content in contact with workers, drains, machinery, and ventilation systems, make for prime circumstances for contamination. Adding to the challenge is the highly resistant nature of these biofilm growths and the need to keep in mind that any antimicrobials utilized in these situations risk health implications with human consumption of the products that are being processed in these locations. For that reason, the ideal means of sanitizing areas of foodborne biofilms would be natural means. Herein, we review a series of innovative natural methods of targeting foodborne biofilms, including bacteriocins, bacteriophages, fungi, phytochemicals, plant extracts, essential oils, gaseous and aqueous control, photocatalysis, enzymatic treatments, and ultrasound mechanisms.
Collapse
|
9
|
Karakosta LK, Vatavali KA, Kosma IS, Badeka AV, Kontominas MG. Combined Effect of Chitosan Coating and Laurel Essential Oil ( Laurus nobilis) on the Microbiological, Chemical, and Sensory Attributes of Water Buffalo Meat. Foods 2022; 11:1664. [PMID: 35681413 PMCID: PMC9180035 DOI: 10.3390/foods11111664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
The combined effect of chitosan coating (CHI) and laurel essential oil (LEO) on the shelf-life extension of water buffalo meat stored under aerobic packaging conditions at 4 °C was investigated. Microbiological, physicochemical, and sensory attributes were monitored over an 18-day storage period. Microbiological data indicated that the (CHI) coating along with (LEO) was the most efficient among treatments in reducing populations of bacteria by 3.2 log cfu/g on day 6 of storage (p < 0.05). pH values of meat varied between 6.04 and 6.21, while thiobarbituric acid (TBA) values were equal to or less than 2.12 mg malondialdehyde/kg throughout storage. The colour parameter L* and a* values decreased, while b* values increased during storage (p < 0.05). Taste proved to be a more sensitive sensory attribute than odour. Based on sensory and microbiological data, product shelf life was approximately 5−6 days for control samples, 7−8 days for samples treated with (LEO), 12 days for samples treated with (CHI), and 13−14 days for samples treated with (CHI + LEO).
Collapse
Affiliation(s)
| | | | | | - Anastasia V. Badeka
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (L.K.K.); (K.A.V.); (I.S.K.)
| | - Michael G. Kontominas
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (L.K.K.); (K.A.V.); (I.S.K.)
| |
Collapse
|
10
|
Jia H, Yamashita T, Li X, Kato H. Laurel Attenuates Dexamethasone-Induced Skeletal Muscle Atrophy In Vitro and in a Rat Model. Nutrients 2022; 14:nu14102029. [PMID: 35631169 PMCID: PMC9143575 DOI: 10.3390/nu14102029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
Prevention of muscle atrophy contributes to improved quality of life and life expectancy. In this study, we investigated the effects of laurel, selected from 34 spices and herbs, on dexamethasone (DEX)-induced skeletal muscle atrophy and deciphered the underlying mechanisms. Co-treatment of C2C12 myotubes with laurel for 12 h inhibited the DEX-induced expression of intracellular ubiquitin ligases—muscle atrophy F-box (atrogin-1/MAFbx) and muscle RING finger 1 (MuRF1)—and reduction in myotube diameter. Male Wistar rats were supplemented with 2% laurel for 17 days, with DEX-induced skeletal muscle atrophy occurring in the last 3 days. Laurel supplementation inhibited the mRNA expression of MuRF1, regulated DNA damage and development 1 (Redd1), and forkhead box class O 1 (Foxo1) in the muscles of rats. Mechanistically, we evaluated the effects of laurel on the cellular proteolysis machinery—namely, the ubiquitin/proteasome system and autophagy—and the mTOR signaling pathway, which regulates protein synthesis. These data indicated that the amelioration of DEX-induced skeletal muscle atrophy induced by laurel, is mainly mediated by the transcriptional inhibition of downstream factors of the ubiquitin-proteasome system. Thus, laurel may be a potential food ingredient that prevents muscle atrophy.
Collapse
|
11
|
Paparella A, Nawade B, Shaltiel-Harpaz L, Ibdah M. A Review of the Botany, Volatile Composition, Biochemical and Molecular Aspects, and Traditional Uses of Laurus nobilis. PLANTS 2022; 11:plants11091209. [PMID: 35567209 PMCID: PMC9100900 DOI: 10.3390/plants11091209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022]
Abstract
Laurus nobilis L. is an aromatic medicinal plant widely cultivated in many world regions. L. nobilis has been increasingly acknowledged over the years as it provides an essential contribution to the food and pharmaceutical industries and cultural integrity. The commercial value of this species derives from its essential oil, whose application might be extended to various industries. The chemical composition of the essential oil depends on environmental conditions, location, and season during which the plants are collected, drying methods, extraction, and analytical conditions. The characterization and chemotyping of L. nobilis essential oil are extremely important because the changes in composition can affect biological activities. Several aspects of the plant’s secondary metabolism, particularly volatile production in L. nobilis, are still unknown. However, understanding the molecular basis of flavor and aroma production is not an easy task to accomplish. Nevertheless, the time-limited efforts for conservation and the unavailability of knowledge about genetic diversity are probably the major reasons for the lack of breeding programs in L. nobilis. The present review gathers the scientific evidence on the research carried out on Laurus nobilis L., considering its cultivation, volatile composition, biochemical and molecular aspects, and antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Balzarini, 1, 64100 Teramo, Italy;
| | - Bhagwat Nawade
- Newe Yaar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel;
| | - Liora Shaltiel-Harpaz
- Migal Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Environmental Sciences Department, Tel Hai College, Upper Galilee 12210, Israel
| | - Mwafaq Ibdah
- Newe Yaar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel;
- Correspondence: ; Tel.: +972-4-953-9537; Fax: +972-4-983-6936
| |
Collapse
|